Source code for tlo.methods.hiv

"""
The HIV Module
Overview:
HIV infection ---> AIDS onset Event (defined by the presence of AIDS symptoms) --> AIDS Death Event
Testing is spontaneously taken-up and can lead to accessing intervention services (ART, VMMC, PrEP).
AIDS symptoms can also lead to care-seeking and there is routine testing for HIV at all non-emergency Generic HSI
 events.
Persons can be on ART -
    - with viral suppression: when the person with not develop AIDS, or if they have already, it is relieved and they
        will not die of AIDS; and the person is not infectious
    - without viral suppression: when there is no benefit in avoiding AIDS and infectiousness is unchanged.
Maintenance on ART and PrEP is re-assessed at periodic 'Decision Events', at which it is determined if the person
  will attend the "next" HSI for continuation of the service; and if not, they are removed from that service and "stop
  treatment". If a stock-out or non-availability of health system resources prevent treatment continuation, the person
  "stops treatment". Stopping treatment leads to a new AIDS Event being scheduled. Persons can restart treatment. If a
  person has developed AIDS, starts treatment and then defaults from treatment, their 'original' AIDS Death Event will
  still occur.
If PrEP is not available due to limitations in the HealthSystem, the person defaults to not being on PrEP.
# Things to note:
    * Need to incorporate testing for HIV at first ANC appointment (as it does in generic HSI)
    * Need to incorporate testing for infants born to HIV-positive mothers (currently done in on_birth here).
    * Need to incorporate cotrim for infants born to HIV-positive mothers (not done here)
    * Cotrimoxazole is not included - either in effect of consumption of the drug (because the effect is not known).
    * Calibration has not been done: most things look OK - except HIV-AIDS deaths
"""
from __future__ import annotations

import os
from typing import TYPE_CHECKING, List

import numpy as np
import pandas as pd

from tlo import DAYS_IN_YEAR, Date, DateOffset, Module, Parameter, Property, Types, logging
from tlo.events import Event, IndividualScopeEventMixin, PopulationScopeEventMixin, RegularEvent
from tlo.lm import LinearModel, LinearModelType, Predictor
from tlo.methods import Metadata, demography, tb
from tlo.methods.causes import Cause
from tlo.methods.dxmanager import DxTest
from tlo.methods.hsi_event import HSI_Event
from tlo.methods.hsi_generic_first_appts import GenericFirstAppointmentsMixin
from tlo.methods.symptommanager import Symptom
from tlo.util import create_age_range_lookup

if TYPE_CHECKING:
    from tlo.methods.hsi_generic_first_appts import HSIEventScheduler

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


[docs] class Hiv(Module, GenericFirstAppointmentsMixin): """ The HIV Disease Module """
[docs] def __init__(self, name=None, resourcefilepath=None, run_with_checks=False): super().__init__(name) self.resourcefilepath = resourcefilepath assert isinstance(run_with_checks, bool) self.run_with_checks = run_with_checks self.stored_test_numbers = [] # create empty list for storing hiv test numbers # hiv outputs needed for calibration keys = ["date", "hiv_prev_adult_1549", "hiv_adult_inc_1549", "hiv_prev_child", "population" ] # initialise empty dict with set keys self.hiv_outputs = {k: [] for k in keys} self.daly_wts = dict() self.lm = dict() self.item_codes_for_consumables_required = dict()
INIT_DEPENDENCIES = {"Demography", "HealthSystem", "Lifestyle", "SymptomManager"} OPTIONAL_INIT_DEPENDENCIES = {"HealthBurden"} ADDITIONAL_DEPENDENCIES = {'Tb', 'NewbornOutcomes'} METADATA = { Metadata.DISEASE_MODULE, Metadata.USES_SYMPTOMMANAGER, Metadata.USES_HEALTHSYSTEM, Metadata.USES_HEALTHBURDEN } # Declare Causes of Death CAUSES_OF_DEATH = { "AIDS_non_TB": Cause(gbd_causes="HIV/AIDS", label="AIDS"), "AIDS_TB": Cause(gbd_causes="HIV/AIDS", label="AIDS"), } # Declare Causes of Disability CAUSES_OF_DISABILITY = { "HIV": Cause(gbd_causes="HIV/AIDS", label="AIDS"), } PROPERTIES = { # --- Core Properties "hv_inf": Property( Types.BOOL, "Is person currently infected with HIV (NB. AIDS status is determined by prescence of the AIDS Symptom.", ), "hv_art": Property( Types.CATEGORICAL, "ART status of person, whether on ART or not; and whether viral load is suppressed or not if on ART.", categories=["not", "on_VL_suppressed", "on_not_VL_suppressed"], ), "hv_on_cotrimoxazole": Property( Types.BOOL, "Whether the person is currently taking and receiving a malaria-protective effect from cotrimoxazole", ), "hv_is_on_prep": Property( Types.BOOL, "Whether the person is currently taking and receiving a protective effect from Pre-Exposure Prophylaxis", ), "hv_behaviour_change": Property( Types.BOOL, "Has this person been exposed to HIV prevention counselling following a negative HIV test result", ), "hv_diagnosed": Property( Types.BOOL, "Knows that they are HIV+: i.e. is HIV+ and tested as HIV+" ), "hv_number_tests": Property(Types.INT, "Number of HIV tests ever taken"), # --- Dates on which things have happened: "hv_last_test_date": Property(Types.DATE, "Date of last HIV test"), "hv_date_inf": Property(Types.DATE, "Date infected with HIV"), "hv_date_treated": Property(Types.DATE, "date hiv treatment started"), "hv_date_last_ART": Property(Types.DATE, "date of last ART dispensation"), } PARAMETERS = { # Baseline characteristics "time_inf": Parameter( Types.DATA_FRAME, "prob of time since infection for baseline adult pop" ), "art_coverage": Parameter(Types.DATA_FRAME, "coverage of ART at baseline"), "treatment_cascade": Parameter(Types.DATA_FRAME, "spectrum estimates of treatment cascade"), # Natural history - transmission - overall rates "beta": Parameter(Types.REAL, "Transmission rate"), "unaids_prevalence_adjustment_factor": Parameter( Types.REAL, "adjustment for baseline age-specific prevalence values to give correct population prevalence" ), "prob_mtct_untreated": Parameter( Types.REAL, "Probability of mother to child transmission" ), "prob_mtct_treated": Parameter( Types.REAL, "Probability of mother to child transmission, mother on ART" ), "prob_mtct_incident_preg": Parameter( Types.REAL, "Probability of mother to child transmission, mother infected during pregnancy", ), "monthly_prob_mtct_bf_untreated": Parameter( Types.REAL, "Probability of mother to child transmission during breastfeeding", ), "monthly_prob_mtct_bf_treated": Parameter( Types.REAL, "Probability of mother to child transmission, mother infected during breastfeeding", ), # Natural history - transmission - relative risk of HIV acquisition (non-intervention) "rr_fsw": Parameter(Types.REAL, "Relative risk of HIV with female sex work"), "rr_circumcision": Parameter( Types.REAL, "Relative risk of HIV with circumcision" ), "rr_rural": Parameter(Types.REAL, "Relative risk of HIV in rural location"), "rr_windex_poorer": Parameter( Types.REAL, "Relative risk of HIV with wealth level poorer" ), "rr_windex_middle": Parameter( Types.REAL, "Relative risk of HIV with wealth level middle" ), "rr_windex_richer": Parameter( Types.REAL, "Relative risk of HIV with wealth level richer" ), "rr_windex_richest": Parameter( Types.REAL, "Relative risk of HIV with wealth level richest" ), "rr_sex_f": Parameter(Types.REAL, "Relative risk of HIV if female"), "rr_edlevel_primary": Parameter( Types.REAL, "Relative risk of HIV with primary education" ), "rr_edlevel_secondary": Parameter( Types.REAL, "Relative risk of HIV with secondary education" ), "rr_edlevel_higher": Parameter( Types.REAL, "Relative risk of HIV with higher education" ), "rr_schisto": Parameter( Types.REAL, "Relative risk of HIV with high intensity S. haematobium infection" ), # Natural history - transmission - relative risk of HIV acquisition (interventions) "rr_behaviour_change": Parameter( Types.REAL, "Relative risk of HIV with behaviour modification" ), "proportion_reduction_in_risk_of_hiv_aq_if_on_prep": Parameter( Types.REAL, "Proportion reduction in risk of HIV acquisition if on PrEP. 0 for no efficacy; 1.0 for perfect efficacy.", ), # Natural history - survival (adults) "mean_months_between_aids_and_death": Parameter( Types.REAL, "Mean number of months (distributed exponentially) for the time between AIDS and AIDS Death", ), "mean_months_between_aids_and_death_infant": Parameter( Types.REAL, "Mean number of months for the time between AIDS and AIDS Death for infants", ), "infection_to_death_weibull_shape_1519": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 15-19 yo (units: years)", ), "infection_to_death_weibull_shape_2024": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 20-24 yo (units: years)", ), "infection_to_death_weibull_shape_2529": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 25-29 yo (units: years)", ), "infection_to_death_weibull_shape_3034": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 30-34 yo (units: years)", ), "infection_to_death_weibull_shape_3539": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 35-39 yo (units: years)", ), "infection_to_death_weibull_shape_4044": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 40-44 yo (units: years)", ), "infection_to_death_weibull_shape_4549": Parameter( Types.REAL, "Shape parameter for Weibull describing time between infection and death for 45-49 yo (units: years)", ), "infection_to_death_weibull_scale_1519": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 15-19 yo (units: years)", ), "infection_to_death_weibull_scale_2024": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 20-24 yo (units: years)", ), "infection_to_death_weibull_scale_2529": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 25-29 yo (units: years)", ), "infection_to_death_weibull_scale_3034": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 30-34 yo (units: years)", ), "infection_to_death_weibull_scale_3539": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 35-39 yo (units: years)", ), "infection_to_death_weibull_scale_4044": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 40-44 yo (units: years)", ), "infection_to_death_weibull_scale_4549": Parameter( Types.REAL, "Scale parameter for Weibull describing time between infection and death for 45-49 yo (units: years)", ), "art_default_to_aids_mean_years": Parameter( Types.REAL, "Mean years between when a person (any change) stops being on treatment to when AIDS is onset (if the " "absence of resuming treatment).", ), "prop_delayed_aids_onset": Parameter( Types.REAL, "Proportion of PLHIV that will have delayed AIDS onset to compensate for AIDS-TB", ), # Natural history - survival (children) "mean_survival_for_infants_infected_prior_to_birth": Parameter( Types.REAL, "Exponential rate parameter for mortality in infants who are infected before birth", ), "infection_to_death_infant_infection_after_birth_weibull_scale": Parameter( Types.REAL, "Weibull scale parameter for mortality in infants who are infected after birth", ), "infection_to_death_infant_infection_after_birth_weibull_shape": Parameter( Types.REAL, "Weibull shape parameter for mortality in infants who are infected after birth", ), # Uptake of Interventions "hiv_testing_rates": Parameter( Types.DATA_FRAME, "annual rates of testing for children and adults" ), "rr_test_hiv_positive": Parameter( Types.REAL, "relative likelihood of having HIV test for people with HIV", ), "hiv_testing_rate_adjustment": Parameter( Types.REAL, "adjustment to current testing rates to account for multiple routes into HIV testing", ), "treatment_initiation_adjustment": Parameter( Types.REAL, "adjustment to current ART coverage levels to account for defaulters", ), "vs_adjustment": Parameter( Types.REAL, "adjustment to current viral suppression levels to account for defaulters", ), "prob_hiv_test_at_anc_or_delivery": Parameter( Types.REAL, "probability of a women having hiv test at anc or following delivery", ), "prob_hiv_test_for_newborn_infant": Parameter( Types.REAL, "probability of a newborn infant having HIV test pre-discharge", ), "prob_start_art_or_vs": Parameter( Types.REAL, "Probability that a person will start treatment and be virally suppressed following testing", ), "prob_behav_chg_after_hiv_test": Parameter( Types.REAL, "Probability that a person will change risk behaviours, if HIV-negative, following testing", ), "prob_prep_for_fsw_after_hiv_test": Parameter( Types.REAL, "Probability that a FSW will start PrEP, if HIV-negative, following testing", ), "prob_prep_for_agyw": Parameter( Types.REAL, "Probability that adolescent girls / young women will start PrEP", ), "prob_circ_after_hiv_test": Parameter( Types.REAL, "Probability that a male will be circumcised, if HIV-negative, following testing", ), "prob_circ_for_child_before_2020": Parameter( Types.REAL, "Probability that a male aging <15 yrs will be circumcised before year 2020", ), "prob_circ_for_child_from_2020": Parameter( Types.REAL, "Probability that a male aging <15 yrs will be circumcised from year 2020, " "which is different from before 2020 as children vmmc policy/fund/cases has changed, " "according to PEPFAR 2020 Country Operational Plan and DHIS2 data", ), "probability_of_being_retained_on_prep_every_3_months": Parameter( Types.REAL, "Probability that someone who has initiated on prep will attend an appointment and be on prep " "for the next 3 months, until the next appointment.", ), "probability_of_being_retained_on_art_every_3_months": Parameter( Types.REAL, "Probability that someone who has initiated on treatment will attend an appointment and be on " "treatment for next 3 months, until the next appointment.", ), "probability_of_seeking_further_art_appointment_if_drug_not_available": Parameter( Types.REAL, "Probability that a person who 'should' be on art will seek another appointment (the following " "day and try for each of the next 7 days) if drugs were not available.", ), "probability_of_seeking_further_art_appointment_if_appointment_not_available": Parameter( Types.REAL, "Probability that a person who 'should' be on art will seek another appointment if the health-" "system has not been able to provide them with an appointment", ), "prep_start_year": Parameter(Types.REAL, "Year from which PrEP is available"), "ART_age_cutoff_young_child": Parameter( Types.INT, "Age cutoff for ART regimen for young children" ), "ART_age_cutoff_older_child": Parameter( Types.INT, "Age cutoff for ART regimen for older children" ), "rel_probability_art_baseline_aids": Parameter( Types.REAL, "relative probability of person with HIV infection over 10 years being on ART at baseline", ), "aids_tb_treatment_adjustment": Parameter( Types.REAL, "probability of death if aids and tb, person on treatment for tb", ), "hiv_healthseekingbehaviour_cap": Parameter( Types.INT, "number of repeat visits assumed for healthcare services", ), "dispensation_period_months": Parameter( Types.REAL, "length of prescription for ARVs in months, same for all PLHIV", ), "length_of_inpatient_stay_if_terminal": Parameter( Types.LIST, "length in days of inpatient stay for end-of-life HIV patients: list has two elements [low-bound-inclusive," " high-bound-exclusive]", ), # ------------------ scale-up parameters for scenario analysis ------------------ # "type_of_scaleup": Parameter( Types.STRING, "argument to determine type scale-up of program which will be implemented, " "can be 'none', 'target' or 'max'", ), "scaleup_start_year": Parameter( Types.INT, "the year when the scale-up starts (it will occur on 1st January of that year)" ), "scaleup_parameters": Parameter( Types.DATA_FRAME, "the parameters and values changed in scenario analysis" ), }
[docs] def read_parameters(self, data_folder): """ * 1) Reads the ResourceFiles * 2) Declare the Symptoms """ # 1) Read the ResourceFiles # Shortcut to parameters dict p = self.parameters workbook = pd.read_excel( os.path.join(self.resourcefilepath, "ResourceFile_HIV.xlsx"), sheet_name=None, ) self.load_parameters_from_dataframe(workbook["parameters"]) # Load data on HIV prevalence p["hiv_prev"] = workbook["hiv_prevalence"] # Load assumed time since infected at baseline (year 2010) p["time_inf"] = workbook["time_since_infection_at_baselin"] # Load reported hiv testing rates p["hiv_testing_rates"] = workbook["MoH_numbers_tests"] # Load assumed ART coverage at baseline (year 2010) p["art_coverage"] = workbook["art_coverage"] # Load probability of art / viral suppression start after positive HIV test p["prob_start_art_or_vs"] = workbook["spectrum_treatment_cascade"] # Load spectrum estimates of treatment cascade p["treatment_cascade"] = workbook["spectrum_treatment_cascade"] # load parameters for scale-up projections p['scaleup_parameters'] = workbook["scaleup_parameters"] # DALY weights # get the DALY weight that this module will use from the weight database (these codes are just random!) if "HealthBurden" in self.sim.modules.keys(): # Chronic infection but not AIDS (including if on ART) # (taken to be equal to "Symptomatic HIV without anaemia") self.daly_wts["hiv_infection_but_not_aids"] = self.sim.modules[ "HealthBurden" ].get_daly_weight(17) # AIDS without anti-retroviral treatment without anemia self.daly_wts["aids"] = self.sim.modules["HealthBurden"].get_daly_weight(19) # 2) Declare the Symptoms. self.sim.modules["SymptomManager"].register_symptom( Symptom( name="aids_symptoms", odds_ratio_health_seeking_in_adults=10.0, # High chance of seeking care when aids_symptoms onset odds_ratio_health_seeking_in_children=10.0, ) )
[docs] def pre_initialise_population(self): """Do things required before the population is created * Build the LinearModels""" self._build_linear_models()
[docs] def _build_linear_models(self): """Establish the Linear Models""" p = self.parameters # ---- LINEAR MODELS ----- # LinearModel for the relative risk of becoming infected during the simulation # N.B. age assumed not to have an effect on incidence predictors = [ Predictor("age_years").when("<15", 0.0).when("<49", 1.0).otherwise(0.0), Predictor("sex").when("F", p["rr_sex_f"]), Predictor("li_is_circ").when(True, p["rr_circumcision"]), Predictor("hv_is_on_prep"). when(True, 1.0 - p["proportion_reduction_in_risk_of_hiv_aq_if_on_prep"]), Predictor("li_urban").when(False, p["rr_rural"]), Predictor("li_wealth", conditions_are_mutually_exclusive=True) .when(2, p["rr_windex_poorer"]) .when(3, p["rr_windex_middle"]) .when(4, p["rr_windex_richer"]) .when(5, p["rr_windex_richest"]), Predictor("li_ed_lev", conditions_are_mutually_exclusive=True) .when(2, p["rr_edlevel_primary"]) .when(3, p["rr_edlevel_secondary"]), Predictor("hv_behaviour_change").when(True, p["rr_behaviour_change"]) ] conditional_predictors = [ Predictor().when( '(ss_sh_infection_status == "High-infection") &' '(sex == "F")', p["rr_schisto"] ), ] if "Schisto" in self.sim.modules else [] self.lm["rr_of_infection"] = LinearModel.multiplicative( *(predictors + conditional_predictors)) # LinearModels to give the shape and scale for the Weibull distribution describing time from infection to death self.lm["scale_parameter_for_infection_to_death"] = LinearModel.multiplicative( Predictor( "age_years", conditions_are_mutually_exclusive=True, conditions_are_exhaustive=True, ) .when("==0", p["mean_survival_for_infants_infected_prior_to_birth"]) .when( ".between(1,4)", p["infection_to_death_infant_infection_after_birth_weibull_scale"], ) .when(".between(5, 19)", p["infection_to_death_weibull_scale_1519"]) .when(".between(20, 24)", p["infection_to_death_weibull_scale_2024"]) .when(".between(25, 29)", p["infection_to_death_weibull_scale_2529"]) .when(".between(30, 34)", p["infection_to_death_weibull_scale_3034"]) .when(".between(35, 39)", p["infection_to_death_weibull_scale_3539"]) .when(".between(40, 44)", p["infection_to_death_weibull_scale_4044"]) .when(".between(45, 49)", p["infection_to_death_weibull_scale_4549"]) .when(">= 50", p["infection_to_death_weibull_scale_4549"]) ) self.lm["shape_parameter_for_infection_to_death"] = LinearModel.multiplicative( Predictor( "age_years", conditions_are_mutually_exclusive=True, conditions_are_exhaustive=True) .when("==0", 1) # Weibull with shape=1 equivalent to exponential distribution .when(".between(1,4)", p["infection_to_death_infant_infection_after_birth_weibull_shape"]) .when(".between(5, 19)", p["infection_to_death_weibull_shape_1519"]) .when(".between(20, 24)", p["infection_to_death_weibull_shape_2024"]) .when(".between(25, 29)", p["infection_to_death_weibull_shape_2529"]) .when(".between(30, 34)", p["infection_to_death_weibull_shape_3034"]) .when(".between(35, 39)", p["infection_to_death_weibull_shape_3539"]) .when(".between(40, 44)", p["infection_to_death_weibull_shape_4044"]) .when(".between(45, 49)", p["infection_to_death_weibull_shape_4549"]) .when(">= 50", p["infection_to_death_weibull_shape_4549"]) ) # -- Linear Model to give the mean months between aids and death depending on age self.lm["offset_parameter_for_months_from_aids_to_death"] = ( LinearModel.multiplicative( Predictor( "age_years", conditions_are_mutually_exclusive=True, conditions_are_exhaustive=True, ) .when("<5", p["mean_months_between_aids_and_death_infant"]) .when(">=5", p["mean_months_between_aids_and_death"]) ) ) # -- Linear Models for the Uptake of Services # Linear model that give the increase in likelihood of seeking a 'Spontaneous' Test for HIV # condition must be not on ART for test # allow children to be tested without symptoms # previously diagnosed can be re-tested self.lm["lm_spontaneous_test_12m"] = LinearModel.multiplicative( Predictor("hv_inf").when(True, p["rr_test_hiv_positive"]).otherwise(1.0), Predictor("hv_art").when("not", 1.0).otherwise(0.0), ) # Linear model for changing behaviour following an HIV-negative test self.lm["lm_behavchg"] = LinearModel( LinearModelType.MULTIPLICATIVE, p["prob_behav_chg_after_hiv_test"], Predictor("hv_inf").when(False, 1.0).otherwise(0.0), ) # Linear model for starting PrEP (if F/sex-workers), following when the person has tested HIV -ve: self.lm["lm_prep"] = LinearModel( LinearModelType.MULTIPLICATIVE, p["prob_prep_for_fsw_after_hiv_test"], Predictor("hv_inf").when(False, 1.0).otherwise(0.0), Predictor("sex").when("F", 1.0).otherwise(0.0), Predictor("li_is_sexworker").when(True, 1.0).otherwise(0.0), ) # Linear model for circumcision (if M) following when the person has been tested: self.lm["lm_circ"] = LinearModel( LinearModelType.MULTIPLICATIVE, p["prob_circ_after_hiv_test"], Predictor("hv_inf").when(False, 1.0).otherwise(0.0), Predictor("sex").when("M", 1.0).otherwise(0.0), ) # Linear model for circumcision for male and aging <15 yrs who spontaneously presents for VMMC # This is to increase the VMMC cases/visits for <15 yrs males, which should account for about # 40% of total VMMC cases according to UNAIDS & WHO/DHIS2 2015-2019 data. self.lm["lm_circ_child"] = LinearModel.multiplicative( Predictor("sex").when("M", 1.0).otherwise(0.0), Predictor("age_years").when("<15", 1.0).otherwise(0.0), Predictor("year", external=True, conditions_are_mutually_exclusive=True, conditions_are_exhaustive=True).when("<2020", p["prob_circ_for_child_before_2020"]) .otherwise(p["prob_circ_for_child_from_2020"]) )
[docs] def initialise_population(self, population): """Set our property values for the initial population.""" df = population.props # --- Current status df.loc[df.is_alive, "hv_inf"] = False df.loc[df.is_alive, "hv_art"] = "not" df.loc[df.is_alive, "hv_is_on_prep"] = False df.loc[df.is_alive, "hv_behaviour_change"] = False df.loc[df.is_alive, "hv_diagnosed"] = False df.loc[df.is_alive, "hv_number_tests"] = 0 # --- Dates on which things have happened df.loc[df.is_alive, "hv_date_inf"] = pd.NaT df.loc[df.is_alive, "hv_last_test_date"] = pd.NaT df.loc[df.is_alive, "hv_date_treated"] = pd.NaT df.loc[df.is_alive, "hv_date_last_ART"] = pd.NaT # Launch sub-routines for allocating the right number of people into each category self.initialise_baseline_prevalence(population) # allocate baseline prevalence self.initialise_baseline_art(population) # allocate baseline art coverage self.initialise_baseline_tested(population) # allocate baseline testing coverage
[docs] def initialise_baseline_prevalence(self, population): """ Assign baseline HIV prevalence, according to age, sex and key other variables (established in analysis of DHS data). """ params = self.parameters df = population.props # prob of infection based on age and sex in baseline year (2010: prevalence_db = params["hiv_prev"] prev_2010 = prevalence_db.loc[ prevalence_db.year == 2010, ["age_from", "sex", "prop_hiv_mw2021_v14"] ] prev_2010 = prev_2010.rename(columns={"age_from": "age_years"}) prob_of_infec = df.loc[df.is_alive, ["age_years", "sex"]].merge( prev_2010, on=["age_years", "sex"], how="left" )["prop_hiv_mw2021_v14"] # probability of being hiv-positive based on risk factors rel_prob_by_risk_factor = LinearModel.multiplicative( Predictor("li_is_sexworker").when(True, params["rr_fsw"]), Predictor("li_is_circ").when(True, params["rr_circumcision"]), Predictor("li_urban").when(False, params["rr_rural"]), Predictor("li_wealth", conditions_are_mutually_exclusive=True) .when(2, params["rr_windex_poorer"]) .when(3, params["rr_windex_middle"]) .when(4, params["rr_windex_richer"]) .when(5, params["rr_windex_richest"]), Predictor("li_ed_lev", conditions_are_mutually_exclusive=True) .when(2, params["rr_edlevel_primary"]) .when(3, params["rr_edlevel_secondary"]), ).predict(df.loc[df.is_alive]) # Rescale relative probability of infection so that its average is 1.0 within each age/sex group p = pd.DataFrame( { "age_years": df["age_years"], "sex": df["sex"], "prob_of_infec": prob_of_infec, "rel_prob_by_risk_factor": rel_prob_by_risk_factor, } ) p["mean_of_rel_prob_within_age_sex_group"] = p.groupby(["age_years", "sex"])[ "rel_prob_by_risk_factor" ].transform("mean") p["scaled_rel_prob_by_risk_factor"] = ( p["rel_prob_by_risk_factor"] / p["mean_of_rel_prob_within_age_sex_group"] ) # add scaling factor 1.1 to match overall unaids prevalence # different assumptions on pop size result in slightly different overall prevalence so use adjustment factor p["overall_prob_of_infec"] = ( p["scaled_rel_prob_by_risk_factor"] * p["prob_of_infec"] * params["unaids_prevalence_adjustment_factor"] ) # this needs to be series of True/False infec = ( self.rng.random_sample(len(p["overall_prob_of_infec"])) < p["overall_prob_of_infec"]) & df.is_alive # Assign the designated person as infected in the population.props dataframe: df.loc[infec, "hv_inf"] = True # Assign date that persons were infected by drawing from assumed distribution (for adults) # Clipped to prevent dates of infection before the person was born. time_inf = params["time_inf"] years_ago_inf = self.rng.choice( time_inf["year"], size=len(infec), replace=True, p=time_inf["scaled_prob"], ) hv_date_inf = pd.Series( self.sim.date - pd.to_timedelta(years_ago_inf * DAYS_IN_YEAR, unit="d") ) df.loc[infec, "hv_date_inf"] = hv_date_inf.clip(lower=df.date_of_birth)
[docs] def initialise_baseline_art(self, population): """assign initial art coverage levels also assign hiv test properties if allocated ART probability of being on ART scaled by length of time infected (>10 years) """ df = population.props params = self.parameters # 1) Determine who is currently on ART worksheet = self.parameters["art_coverage"] art_data = worksheet.loc[ worksheet.year == 2010, ["year", "single_age", "sex", "prop_coverage"] ] # merge all susceptible individuals with their coverage probability based on sex and age prob_art = df.loc[df.is_alive, ["age_years", "sex"]].merge( art_data, left_on=["age_years", "sex"], right_on=["single_age", "sex"], how="left", )["prop_coverage"] # make a series with relative risks of art which depends on >10 years infected (5x higher) rr_art = pd.Series(1, index=df.index) rr_art.loc[ df.is_alive & (df.hv_date_inf < (self.sim.date - pd.DateOffset(years=10))) ] = params["rel_probability_art_baseline_aids"] # Rescale relative probability of infection so that its average is 1.0 within each age/sex group p = pd.DataFrame( { "age_years": df["age_years"], "sex": df["sex"], "prob_art": prob_art, "rel_prob_art_by_time_infected": rr_art, } ) p["mean_of_rel_prob_within_age_sex_group"] = p.groupby(["age_years", "sex"])[ "rel_prob_art_by_time_infected" ].transform("mean") p["scaled_rel_prob_by_time_infected"] = ( p["rel_prob_art_by_time_infected"] / p["mean_of_rel_prob_within_age_sex_group"] ) p["overall_prob_of_art"] = p["scaled_rel_prob_by_time_infected"] * p["prob_art"] random_draw = self.rng.random_sample(size=len(df)) art_idx = df.index[ (random_draw < p["overall_prob_of_art"]) & df.is_alive & df.hv_inf ] # 2) Determine adherence levels for those currently on ART, for each of adult men, adult women and children adult_f_art_idx = df.loc[ (df.index.isin(art_idx) & (df.sex == "F") & (df.age_years >= 15)) ].index adult_m_art_idx = df.loc[ (df.index.isin(art_idx) & (df.sex == "M") & (df.age_years >= 15)) ].index child_art_idx = df.loc[(df.index.isin(art_idx) & (df.age_years < 15))].index suppr = list() # list of all indices for persons on ART and suppressed notsuppr = list() # list of all indices for persons on ART and not suppressed def split_into_vl_and_notvl(all_idx, prob): vl_suppr = self.rng.random_sample(len(all_idx)) < prob suppr.extend(all_idx[vl_suppr]) notsuppr.extend(all_idx[~vl_suppr]) # get expected viral suppression rates by age and year prob_vs_adult = self.prob_viral_suppression(self.sim.date.year, age_of_person=20) prob_vs_child = self.prob_viral_suppression(self.sim.date.year, age_of_person=5) split_into_vl_and_notvl(adult_f_art_idx, prob_vs_adult) split_into_vl_and_notvl(adult_m_art_idx, prob_vs_adult) split_into_vl_and_notvl(child_art_idx, prob_vs_child) # Set ART status: df.loc[suppr, "hv_art"] = "on_VL_suppressed" df.loc[notsuppr, "hv_art"] = "on_not_VL_suppressed" # check that everyone on ART is labelled as such assert not (df.loc[art_idx, "hv_art"] == "not").any() # for logical consistency, ensure that all persons on ART have been tested and diagnosed # set last test date prior to 2010 so not counted as a current new test # don't record individual property hv_number_tests for logging (occurred prior to 2010) df.loc[art_idx, "hv_last_test_date"] = self.sim.date - pd.DateOffset(years=3) df.loc[art_idx, "hv_diagnosed"] = True # all those on ART need to have event scheduled for continuation/cessation of treatment # this window is 1-90 days (3-monthly prescribing) for person in art_idx: days = self.rng.randint(low=1, high=self.parameters['dispensation_period_months'] * 30.5, dtype=np.int64) date_treated = (params['dispensation_period_months'] * 30.5) - days df.at[person, "hv_date_treated"] = self.sim.date - pd.to_timedelta(date_treated, unit="days") df.at[person, "hv_date_last_ART"] = self.sim.date - pd.to_timedelta(date_treated, unit="days") self.sim.schedule_event( Hiv_DecisionToContinueTreatment(person_id=person, module=self), self.sim.date + pd.to_timedelta(days, unit="days"), )
[docs] def initialise_baseline_tested(self, population): """assign initial hiv testing levels, only for adults all who have been allocated ART will already have property hv_diagnosed=True use the spectrum proportion PLHIV who know status to assign remaining tests """ df = population.props p = self.parameters # get proportion plhiv who know staus from spectum estimates worksheet = p["treatment_cascade"] testing_data = worksheet.loc[ worksheet.year == 2010, ["year", "age", "know_status"] ] adult_know_status = testing_data.loc[(testing_data.age == "adults"), "know_status"].values[0] / 100 children_know_status = testing_data.loc[(testing_data.age == "children"), "know_status"].values[0] / 100 # ADULTS # find proportion of adult PLHIV diagnosed (currently on ART) adults_diagnosed = len(df[df.is_alive & df.hv_diagnosed & (df.age_years >= 15)]) adults_infected = len(df[df.is_alive & df.hv_inf & (df.age_years >= 15)]) prop_currently_diagnosed = adults_diagnosed / adults_infected if adults_infected > 0 else 0 hiv_test_deficit = adult_know_status - prop_currently_diagnosed number_deficit = int(hiv_test_deficit * adults_infected) adult_test_index = [] if hiv_test_deficit > 0: # sample number_deficit from remaining undiagnosed pop adult_undiagnosed = df.loc[df.is_alive & df.hv_inf & ~df.hv_diagnosed & (df.age_years >= 15)].index adult_test_index = self.rng.choice(adult_undiagnosed, size=number_deficit, replace=False) # CHILDREN # find proportion of adult PLHIV diagnosed (currently on ART) children_diagnosed = len(df[df.is_alive & df.hv_diagnosed & (df.age_years < 15)]) children_infected = len(df[df.is_alive & df.hv_inf & (df.age_years < 15)]) prop_currently_diagnosed = children_diagnosed / children_infected if children_infected > 0 else 0 hiv_test_deficit = children_know_status - prop_currently_diagnosed number_deficit = int(hiv_test_deficit * children_infected) child_test_index = [] if hiv_test_deficit > 0: child_undiagnosed = df.loc[df.is_alive & df.hv_inf & ~df.hv_diagnosed & (df.age_years < 15)].index child_test_index = self.rng.choice(child_undiagnosed, size=number_deficit, replace=False) # join indices test_index = list(adult_test_index) + list(child_test_index) df.loc[df.index.isin(test_index), "hv_diagnosed"] = True # dummy date for date last hiv test (before sim start), otherwise see big spike in testing 01-01-2010 df.loc[test_index, "hv_last_test_date"] = self.sim.date - pd.DateOffset( years=3 )
[docs] def initialise_simulation(self, sim): """ * 1) Schedule the Main HIV Regular Polling Event * 2) Schedule the Logging Event * 3) Determine who has AIDS and impose the Symptoms 'aids_symptoms' * 4) Schedule the AIDS onset events and AIDS death event for those infected already * 5) (Optionally) Schedule the event to check the configuration of all properties * 6) Define the DxTests * 7) Look-up and save the codes for consumables """ df = sim.population.props p = self.parameters # 1) Schedule the Main HIV Regular Polling Event sim.schedule_event( HivRegularPollingEvent(self), sim.date + DateOffset(days=0) ) # 2) Schedule the Logging Event sim.schedule_event(HivLoggingEvent(self), sim.date + DateOffset(years=1)) # Optional: Schedule the scale-up of programs if self.parameters["type_of_scaleup"] != 'none': scaleup_start_date = Date(self.parameters["scaleup_start_year"], 1, 1) assert scaleup_start_date >= self.sim.start_date, f"Date {scaleup_start_date} is before simulation starts." sim.schedule_event(HivScaleUpEvent(self), scaleup_start_date) # 3) Determine who has AIDS and impose the Symptoms 'aids_symptoms' # Those on ART currently (will not get any further events scheduled): on_art_idx = df.loc[df.is_alive & df.hv_inf & (df.hv_art == "on_VL_suppressed")].index # Those that lived more than ten years and not currently on ART are assumed to currently have AIDS # (will have AIDS Death event scheduled) has_aids_idx = df.loc[ df.is_alive & df.hv_inf & ((self.sim.date - df.hv_date_inf).dt.days > 10 * 365) & (df.hv_art != "on_VL_suppressed") ].index # Those that are in neither category are "before AIDS" (will have AIDS Onset Event scheduled) before_aids_idx = df.loc[df.is_alive & df.hv_inf].index.difference(has_aids_idx).difference(on_art_idx) # Impose the symptom to those that have AIDS (the symptom is the definition of having AIDS) self.sim.modules["SymptomManager"].change_symptom( person_id=has_aids_idx.tolist(), symptom_string="aids_symptoms", add_or_remove="+", disease_module=self, ) # 4) Schedule the AIDS onset events and AIDS death event for those infected already # AIDS Onset Event for those who are infected but not yet AIDS and have not ever started ART # NB. This means that those on ART at the start of the simulation may not have an AIDS event -- # like it happened at some point in the past scale, shape, offset = self.get_time_from_infection_to_aids_distribution_parameters(before_aids_idx) days_infection_to_aids = self.sample_time_from_infection_to_aids_given_parameters(scale, shape, offset) days_since_infection = (self.sim.date - df.loc[before_aids_idx, "hv_date_inf"]) # If any days_since_infection >= days_infection_to_aids are negative resample # these values until all are positive days_until_aids_is_negative = days_since_infection >= days_infection_to_aids while np.any(days_until_aids_is_negative): days_infection_to_aids[days_until_aids_is_negative] = ( self.sample_time_from_infection_to_aids_given_parameters( scale[days_until_aids_is_negative], shape[days_until_aids_is_negative], offset[days_until_aids_is_negative], ) ) days_until_aids_is_negative = days_since_infection >= days_infection_to_aids days_until_aids = days_infection_to_aids - days_since_infection date_onset_aids = self.sim.date + pd.to_timedelta(days_until_aids, unit='D') for person_id, date in zip(before_aids_idx, date_onset_aids): sim.schedule_event( HivAidsOnsetEvent(person_id=person_id, module=self, cause='AIDS_non_TB'), date=date, ) # Schedule the AIDS death events for those who have got AIDS already for person_id in has_aids_idx: # schedule a HSI_Test_and_Refer otherwise initial AIDS rates and deaths are far too high date_test = self.sim.date + pd.DateOffset(days=self.rng.randint(0, 60)) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer( person_id=person_id, module=self, referred_from="initialise_simulation"), priority=1, topen=date_test, tclose=self.sim.date + pd.DateOffset(days=365), ) date_aids_death = ( self.sim.date + pd.DateOffset( months=self.rng.randint(low=0, high=p['mean_months_between_aids_and_death'])) ) # 30% AIDS deaths have TB co-infection cause_of_death = self.rng.choice(a=["AIDS_non_TB", "AIDS_TB"], size=1, p=[0.7, 0.3]) sim.schedule_event( HivAidsDeathEvent(person_id=person_id, module=self, cause=cause_of_death), date=date_aids_death, ) # schedule hospital stay for end of life care if untreated beddays = self.rng.randint( low=p['length_of_inpatient_stay_if_terminal'][0], high=p['length_of_inpatient_stay_if_terminal'][1]) date_admission = date_aids_death - pd.DateOffset(days=beddays) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_EndOfLifeCare( person_id=person_id, module=self, beddays=beddays ), priority=0, topen=( date_admission if (date_admission >= self.sim.date) else self.sim.date ), ) # 5) (Optionally) Schedule the event to check the configuration of all properties if self.run_with_checks: sim.schedule_event( HivCheckPropertiesEvent(self), sim.date + pd.DateOffset(months=1) ) # 6) Store codes for the consumables needed hs = self.sim.modules["HealthSystem"] # updated consumables listing # blood tube and gloves are optional items self.item_codes_for_consumables_required['hiv_rapid_test'] = \ hs.get_item_code_from_item_name("Test, HIV EIA Elisa") self.item_codes_for_consumables_required['hiv_early_infant_test'] = \ hs.get_item_code_from_item_name("Test, HIV EIA Elisa") self.item_codes_for_consumables_required['blood_tube'] = \ hs.get_item_code_from_item_name("Blood collecting tube, 5 ml") self.item_codes_for_consumables_required['gloves'] = \ hs.get_item_code_from_item_name("Disposables gloves, powder free, 100 pieces per box") self.item_codes_for_consumables_required['vl_measurement'] = \ hs.get_item_codes_from_package_name("Viral Load") self.item_codes_for_consumables_required['circ'] = \ hs.get_item_codes_from_package_name("Male circumcision ") # adult prep: 1 tablet daily self.item_codes_for_consumables_required['prep'] = \ hs.get_item_code_from_item_name("Tenofovir (TDF)/Emtricitabine (FTC), tablet, 300/200 mg") # infant NVP 1.5mg daily for birth weight 2500g or above, for 6 weeks self.item_codes_for_consumables_required['infant_prep'] = \ hs.get_item_code_from_item_name("Nevirapine, oral solution, 10 mg/ml") # First - line ART for adults(age > "ART_age_cutoff_older_child") # TDF/3TC/DTG 120/60/50mg, 1 tablet per day # cotrim adult tablet, 1 tablet per day, units specified in mg * dispensation days self.item_codes_for_consumables_required['First-line ART regimen: adult'] = \ hs.get_item_code_from_item_name("First-line ART regimen: adult") self.item_codes_for_consumables_required['First-line ART regimen: adult: cotrimoxazole'] = \ hs.get_item_code_from_item_name("Cotrimoxizole, 960mg pppy") # ART for older children aged ("ART_age_cutoff_younger_child" < age <= "ART_age_cutoff_older_child"): # ABC/3TC/DTG 120/60/50mg, 3 tablets per day # cotrim paediatric tablet, 4 tablets per day, units specified in mg * dispensation days self.item_codes_for_consumables_required['First line ART regimen: older child'] = \ hs.get_item_code_from_item_name("First line ART regimen: older child") self.item_codes_for_consumables_required['First line ART regimen: older child: cotrimoxazole'] = \ hs.get_item_code_from_item_name("Cotrimoxazole 120mg_1000_CMST") # ART for younger children aged (age < "ART_age_cutoff_younger_child"): # ABC/3TC/DTG 120/60/10mg, 2 tablets per day # cotrim paediatric tablet, 2 tablets per day, units specified in mg * dispensation days self.item_codes_for_consumables_required['First line ART regimen: young child'] = \ hs.get_item_code_from_item_name("First line ART regimen: young child") self.item_codes_for_consumables_required['First line ART regimen: young child: cotrimoxazole'] = \ hs.get_item_code_from_item_name("Cotrimoxazole 120mg_1000_CMST") # 7) Define the DxTests # HIV Rapid Diagnostic Test: # NB. The rapid test is assumed to be 100% specific and sensitive. This is used to guarantee that all persons # that start ART are truly HIV-pos. self.sim.modules['HealthSystem'].dx_manager.register_dx_test( hiv_rapid_test=DxTest( property='hv_inf', item_codes=self.item_codes_for_consumables_required['hiv_rapid_test'], optional_item_codes=[ self.item_codes_for_consumables_required['blood_tube'], self.item_codes_for_consumables_required['gloves']] ) ) # Test for Early Infect Diagnosis self.sim.modules['HealthSystem'].dx_manager.register_dx_test( hiv_early_infant_test=DxTest( property='hv_inf', sensitivity=1.0, specificity=1.0, item_codes=self.item_codes_for_consumables_required['hiv_early_infant_test'], optional_item_codes=[ self.item_codes_for_consumables_required['blood_tube'], self.item_codes_for_consumables_required['gloves']] ) )
[docs] def update_parameters_for_program_scaleup(self): """ options for program scale-up are 'target' or 'max' """ p = self.parameters scaled_params_workbook = p["scaleup_parameters"] if p['type_of_scaleup'] == 'target': scaled_params = scaled_params_workbook.set_index('parameter')['target_value'].to_dict() else: scaled_params = scaled_params_workbook.set_index('parameter')['max_value'].to_dict() # scale-up HIV program # reduce risk of HIV - applies to whole adult population p["beta"] = p["beta"] * scaled_params["reduction_in_hiv_beta"] # increase PrEP coverage for FSW after HIV test p["prob_prep_for_fsw_after_hiv_test"] = scaled_params["prob_prep_for_fsw_after_hiv_test"] # prep poll for AGYW - target to the highest risk # increase retention to 75% for FSW and AGYW p["prob_prep_for_agyw"] = scaled_params["prob_prep_for_agyw"] p["probability_of_being_retained_on_prep_every_3_months"] = scaled_params["probability_of_being_retained_on_prep_every_3_months"] # perfect retention on ART p["probability_of_being_retained_on_art_every_3_months"] = scaled_params["probability_of_being_retained_on_art_every_3_months"] # increase probability of VMMC after hiv test p["prob_circ_after_hiv_test"] = scaled_params["prob_circ_after_hiv_test"] # increase testing/diagnosis rates, default 2020 0.03/0.25 -> 93% dx p["hiv_testing_rates"]["annual_testing_rate_adults"] = scaled_params["annual_testing_rate_adults"] # ANC testing - value for mothers and infants testing p["prob_hiv_test_at_anc_or_delivery"] = scaled_params["prob_hiv_test_at_anc_or_delivery"] p["prob_hiv_test_for_newborn_infant"] = scaled_params["prob_hiv_test_for_newborn_infant"] # viral suppression rates # adults already at 95% by 2020 # change all column values p["prob_start_art_or_vs"]["virally_suppressed_on_art"] = scaled_params["virally_suppressed_on_art"] # update exising linear models to use new scaled-up paramters self._build_linear_models()
[docs] def on_birth(self, mother_id, child_id): """ * Initialise our properties for a newborn individual; * schedule testing; * schedule infection during breastfeeding """ p = self.parameters df = self.sim.population.props # Default Settings: # --- Current status df.at[child_id, "hv_inf"] = False df.at[child_id, "hv_art"] = "not" df.at[child_id, "hv_on_cotrimoxazole"] = False df.at[child_id, "hv_is_on_prep"] = False df.at[child_id, "hv_behaviour_change"] = False df.at[child_id, "hv_diagnosed"] = False df.at[child_id, "hv_number_tests"] = 0 # --- Dates on which things have happened df.at[child_id, "hv_date_inf"] = pd.NaT df.at[child_id, "hv_last_test_date"] = pd.NaT df.at[child_id, "hv_date_treated"] = pd.NaT df.at[child_id, "hv_date_last_ART"] = pd.NaT # ----------------------------------- MTCT - AT OR PRIOR TO BIRTH -------------------------- # DETERMINE IF THE CHILD IS INFECTED WITH HIV FROM THEIR MOTHER DURING PREGNANCY / DELIVERY mother = df.loc[abs(mother_id)] # Not interested whether true or direct birth mother_infected_prior_to_pregnancy = mother.hv_inf & ( mother.hv_date_inf <= mother.date_of_last_pregnancy ) mother_infected_during_pregnancy = mother.hv_inf & ( mother.hv_date_inf > mother.date_of_last_pregnancy ) if mother_infected_prior_to_pregnancy: if mother.hv_art == "on_VL_suppressed": # mother has existing infection, mother ON ART and VL suppressed at time of delivery child_infected = self.rng.random_sample() < p["prob_mtct_treated"] else: # mother was infected prior to pregnancy but is not on VL suppressed at time of delivery child_infected = ( self.rng.random_sample() < p["prob_mtct_untreated"] ) elif mother_infected_during_pregnancy: # mother has incident infection during pregnancy, NO ART child_infected = ( self.rng.random_sample() < p["prob_mtct_incident_preg"] ) else: # mother is not infected child_infected = False if child_infected: self.do_new_infection(child_id) # ----------------------------------- MTCT - DURING BREASTFEEDING -------------------------- # If child is not infected and is being breastfed, then expose them to risk of MTCT through breastfeeding if ( (not child_infected) and (df.at[child_id, "nb_breastfeeding_status"] != "none") and mother.hv_inf ): # Pass mother's id, whether from true or direct birth self.mtct_during_breastfeeding(abs(mother_id), child_id) # ----------------------------------- HIV testing -------------------------- if "CareOfWomenDuringPregnancy" not in self.sim.modules: # if mother's HIV status not known, schedule test at delivery # usually performed by care_of_women_during_pregnancy module if not mother.hv_diagnosed and \ mother.is_alive and ( self.rng.random_sample() < p["prob_hiv_test_at_anc_or_delivery"]): self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer( person_id=abs(mother_id), # Pass mother's id, whether from true or direct birth module=self, referred_from='ANC_routine'), priority=1, topen=self.sim.date, tclose=None, ) # if mother known HIV+, schedule virological test for infant and give prep if mother.hv_diagnosed and df.at[child_id, "is_alive"]: self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartInfantProphylaxis( person_id=child_id, module=self, referred_from="on_birth", repeat_visits=0), priority=1, topen=self.sim.date, tclose=None, ) if "newborn_outcomes" not in self.sim.modules and ( self.rng.random_sample() < p['prob_hiv_test_for_newborn_infant']): self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer( person_id=child_id, module=self, referred_from='Infant_testing'), priority=1, topen=self.sim.date + pd.DateOffset(weeks=6), tclose=None, ) # these later infant tests are not in newborn_outcomes if self.rng.random_sample() < p['prob_hiv_test_for_newborn_infant']: self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer( person_id=child_id, module=self, referred_from='Infant_testing'), priority=1, topen=self.sim.date + pd.DateOffset(months=9), tclose=None, ) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer( person_id=child_id, module=self, referred_from='Infant_testing'), priority=1, topen=self.sim.date + pd.DateOffset(months=18), tclose=None, )
[docs] def report_daly_values(self): """Report DALYS for HIV, based on current symptomatic state of persons.""" df = self.sim.population.props dalys = pd.Series(data=0, index=df.loc[df.is_alive].index) # All those infected get the 'infected but not AIDS' daly_wt: dalys.loc[df.hv_inf] = self.daly_wts["hiv_infection_but_not_aids"] # Overwrite the value for those that currently have symptoms of AIDS with the 'AIDS' daly_wt: dalys.loc[ self.sim.modules["SymptomManager"].who_has("aids_symptoms") ] = self.daly_wts["aids"] return dalys
[docs] def mtct_during_breastfeeding(self, mother_id, child_id): """ Compute risk of mother-to-child transmission and schedule HivInfectionDuringBreastFeedingEvent. If the child is breastfeeding currently, consider the time-until-infection assuming a constantly monthly risk of transmission. If the breastfeeding has ceased by the time of the scheduled infection, then it will not run. (This means that this event can be run at birth or at the time of the mother's infection without the need for further polling etc.) """ df = self.sim.population.props params = self.parameters if df.at[mother_id, "hv_art"] == "on_VL_suppressed": monthly_prob_mtct_bf = params["monthly_prob_mtct_bf_treated"] else: monthly_prob_mtct_bf = params["monthly_prob_mtct_bf_untreated"] if monthly_prob_mtct_bf > 0.0: months_to_infection = int(self.rng.exponential(1 / monthly_prob_mtct_bf)) date_of_infection = self.sim.date + pd.DateOffset( months=months_to_infection ) self.sim.schedule_event( HivInfectionDuringBreastFeedingEvent(person_id=child_id, module=self), date_of_infection, )
[docs] def do_new_infection(self, person_id): """ Enact that this person is infected with HIV * Update their hv_inf status and hv_date_inf * Schedule the AIDS onset event for this person """ df = self.sim.population.props # Update HIV infection status for this person df.at[person_id, "hv_inf"] = True df.at[person_id, "hv_date_inf"] = self.sim.date # Schedule AIDS onset events for this person parameters = self.get_time_from_infection_to_aids_distribution_parameters( [person_id] ) date_onset_aids = ( self.sim.date + self.sample_time_from_infection_to_aids_given_parameters(*parameters) ).iloc[0] self.sim.schedule_event( event=HivAidsOnsetEvent(self, person_id, cause='AIDS_non_TB'), date=date_onset_aids, )
[docs] def sample_time_from_infection_to_aids_given_parameters(self, scale, shape, offset): """Generate time(s) between onset of infection and AIDS as Pandas time deltas. The times are generated from translated Weibull distributions discretised to an integer number of months. :param scale: Scale parameters of Weibull distributions (unit: years). :param shape: Shape parameters of Weibull distributions. :param offset: Offset to (negatively) shift Weibull variable by (unit: months). :return: Generated time deltas. """ months_to_death = self.rng.weibull(shape) * scale * 12 months_to_aids = np.round(months_to_death - offset).clip(0).astype(int) return pd.to_timedelta(months_to_aids * 30.5, unit='D')
[docs] def get_time_from_infection_to_aids_distribution_parameters(self, person_ids): """Compute per-person parameters of distribution of time from infection to aids. Evaluates three linear models which output age specific scale, shape and offset parameters for the (translated) Weibull distribution used to generate the time from infection to aids for an individual. For those infected prior to, or at, birth, a Weibull distribution with shape parameter 1 (equivalent to an exponential distribution) is used. For those infected after birth a Weibull distribution with both shape and scale depending on age is used. :param person_ids: Iterable of ID indices of individuals to get parameters for. :return: Per-person parameters as a 3-tuple ``(scale, shape, offset)`` of ``pandas.Series`` objects. """ subpopulation = self.sim.population.props.loc[person_ids] # get the scale parameters (unit: years) scale = self.lm["scale_parameter_for_infection_to_death"].predict(subpopulation) # get the shape parameter shape = self.lm["shape_parameter_for_infection_to_death"].predict(subpopulation) # get the mean months between aids and death (unit: months) offset = self.lm["offset_parameter_for_months_from_aids_to_death"].predict( subpopulation ) return scale, shape, offset
[docs] def get_time_from_aids_to_death(self): """Gives time between onset of AIDS and death, returning a pd.DateOffset. Assumes that the time between onset of AIDS symptoms and deaths is exponentially distributed. """ mean = self.parameters["mean_months_between_aids_and_death"] draw_number_of_months = int(np.round(self.rng.exponential(mean))) return pd.DateOffset(months=(draw_number_of_months + 1))
[docs] def do_when_hiv_diagnosed(self, person_id): """Things to do when a person has been tested and found (newly) to be HIV-positive:. * Consider if ART should be initiated, and schedule HSI if so. The person should not yet be on ART. """ df = self.sim.population.props if not (df.loc[person_id, "hv_art"] == "not"): logger.warning( key="message", data="This event should not be running. do_when_diagnosed is for newly diagnosed persons.", ) # Consider if the person will be referred to start ART if df.loc[person_id, "age_years"] <= 15: starts_art = True else: starts_art = self.rng.random_sample() < self.prob_art_start_after_test(self.sim.date.year) if starts_art: self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueTreatment(person_id=person_id, module=self, facility_level_of_this_hsi="1a"), topen=self.sim.date, tclose=None, priority=0, )
[docs] def prob_art_start_after_test(self, year): """ returns the probability of starting ART after a positive HIV test this value for initiation can be higher than the current reported coverage levels to account for defaulters """ prob_art = self.parameters["prob_start_art_or_vs"] current_year = year if year <= 2025 else 2025 # use iloc to index by position as index will change by year return_prob = prob_art.loc[ (prob_art.year == current_year) & (prob_art.age == "adults"), "prob_art_if_dx"].values[0] * self.parameters["treatment_initiation_adjustment"] return return_prob
[docs] def prob_viral_suppression(self, year, age_of_person): """ returns the probability of viral suppression once on ART data from 2012 - 2020 from spectrum assume constant values 2010-2012 and 2020 on time-series ends at 2025 """ prob_vs = self.parameters["prob_start_art_or_vs"] current_year = year if year <= 2025 else 2025 age_of_person = age_of_person age_group = "adults" if age_of_person >= 15 else "children" return_prob = prob_vs.loc[ (prob_vs.year == current_year) & (prob_vs.age == age_group), "virally_suppressed_on_art"].values[0] # convert to probability and adjust for defaulters return_prob = (return_prob / 100) * self.parameters["vs_adjustment"] assert return_prob is not None return return_prob
[docs] def stops_treatment(self, person_id): """Helper function that is called when someone stops being on ART. Sets the flag for ART status. If the person was already on ART, it schedules a new AIDSEvent """ df = self.sim.population.props # Schedule a new AIDS onset event if the person was on ART up until now if df.at[person_id, "hv_art"] == "on_VL_suppressed": months_to_aids = int( np.floor( self.rng.exponential( scale=self.parameters["art_default_to_aids_mean_years"] ) * 12.0 ) ) self.sim.schedule_event( event=HivAidsOnsetEvent(person_id=person_id, module=self, cause='AIDS_non_TB'), date=self.sim.date + pd.DateOffset(months=months_to_aids), ) # Set that the person is no longer on ART or cotrimoxazole df.at[person_id, "hv_art"] = "not" df.at[person_id, "hv_on_cotrimoxazole"] = False
[docs] def per_capita_testing_rate(self): """This calculates the numbers of hiv tests performed in each time period. It looks at the cumulative number of tests ever performed and subtracts the number calculated at the last time point. Values are converted to per capita testing rates. This function is called by the logger and can be called at any frequency """ df = self.sim.population.props # get number of tests performed in last time period if self.sim.date.year == 2011: number_tests_new = df.hv_number_tests.sum() previous_test_numbers = 0 else: previous_test_numbers = self.stored_test_numbers[-1] # calculate number of tests now performed - cumulative, include those who have died number_tests_new = df.hv_number_tests.sum() self.stored_test_numbers.append(number_tests_new) # number of tests performed in last time period number_tests_in_last_period = number_tests_new - previous_test_numbers # per-capita testing rate per_capita_testing = number_tests_in_last_period / len(df[df.is_alive]) # return updated value for time-period return per_capita_testing
[docs] def decide_whether_hiv_test_for_mother(self, person_id, referred_from) -> bool: """ This will return a True/False for whether an HIV test should be scheduled for a mother; and schedule the HIV Test if a test should be scheduled. This is called from `labour.py` under `interventions_delivered_pre_discharge` and `care_of_women_during_pregnancy.py`. Mothers who are not already diagnosed will have an HIV test with a certain probability defined by a parameter; mothers who are diagnosed already will not have another HIV test. """ df = self.sim.population.props if not df.at[person_id, 'hv_diagnosed'] and ( self.rng.random_sample() < self.parameters['prob_hiv_test_at_anc_or_delivery']): self.sim.modules['HealthSystem'].schedule_hsi_event( HSI_Hiv_TestAndRefer( person_id=person_id, module=self, referred_from=referred_from), topen=self.sim.date, tclose=None, priority=0) return True else: return False
[docs] def decide_whether_hiv_test_for_infant(self, mother_id, child_id) -> None: """ This will schedule an HIV testing HSI for a child under certain conditions. It is called from newborn_outcomes.py under hiv_screening_for_at_risk_newborns. """ df = self.sim.population.props mother_id = mother_id child_id = child_id if ( not df.at[child_id, "hv_diagnosed"] and df.at[mother_id, "hv_diagnosed"] and (df.at[child_id, "nb_pnc_check"] == 1) and (self.rng.random_sample() < self.parameters["prob_hiv_test_for_newborn_infant"]) ): self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_TestAndRefer( person_id=child_id, module=self, referred_from="newborn_outcomes"), topen=self.sim.date + pd.DateOffset(weeks=6), tclose=None, priority=0 )
[docs] def check_config_of_properties(self): """check that the properties are currently configured correctly""" df = self.sim.population.props df_alive = df.loc[df.is_alive] # basic check types of columns and dtypes orig = self.sim.population.new_row assert (df.dtypes == orig.dtypes).all() def is_subset(col_for_set, col_for_subset): # Confirms that the series of col_for_subset is true only for a subset of the series for col_for_set return set(col_for_subset.loc[col_for_subset].index).issubset( col_for_set.loc[col_for_set].index ) # Check that core properties of current status are never None/NaN/NaT assert not df_alive.hv_inf.isna().any() assert not df_alive.hv_art.isna().any() assert not df_alive.hv_behaviour_change.isna().any() assert not df_alive.hv_diagnosed.isna().any() assert not df_alive.hv_number_tests.isna().any() # Check that the core HIV properties are 'nested' in the way expected. assert is_subset( col_for_set=df_alive.hv_inf, col_for_subset=df_alive.hv_diagnosed ) assert is_subset( col_for_set=df_alive.hv_diagnosed, col_for_subset=(df_alive.hv_art != "not") ) # Check that if person is not infected, the dates of HIV events are None/NaN/NaT assert df_alive.loc[~df_alive.hv_inf, "hv_date_inf"].isna().all() # Check that dates consistent for those infected with HIV assert not df_alive.loc[df_alive.hv_inf].hv_date_inf.isna().any() assert ( df_alive.loc[df_alive.hv_inf].hv_date_inf >= df_alive.loc[df_alive.hv_inf].date_of_birth ).all() # Check alignment between AIDS Symptoms and status and infection and ART status has_aids_symptoms = set( self.sim.modules["SymptomManager"].who_has("aids_symptoms") ) assert has_aids_symptoms.issubset( df_alive.loc[df_alive.is_alive & df_alive.hv_inf].index ) # a person can have AIDS onset if they're virally suppressed if had active TB # if cured of TB and still virally suppressed, AIDS symptoms are removed assert 0 == len( has_aids_symptoms.intersection( df_alive.loc[ df_alive.is_alive & (df_alive.hv_art == "on_VL_suppressed") & (df_alive.tb_inf == "uninfected") ].index ) )
[docs] def do_at_generic_first_appt( self, person_id: int, symptoms: List[str], schedule_hsi_event: HSIEventScheduler, **kwargs, ) -> None: # 'Automatic' testing for HIV for everyone attending care with AIDS symptoms: # - suppress the footprint (as it done as part of another appointment) # - do not do referrals if the person is HIV negative (assumed not time for counselling etc). if "aids_symptoms" in symptoms: event = HSI_Hiv_TestAndRefer( person_id=person_id, module=self, referred_from="hsi_generic_first_appt", suppress_footprint=True, do_not_refer_if_neg=True, ) schedule_hsi_event(event, priority=0, topen=self.sim.date)
# --------------------------------------------------------------------------- # Main Polling Event # ---------------------------------------------------------------------------
[docs] class HivRegularPollingEvent(RegularEvent, PopulationScopeEventMixin): """ The HIV Regular Polling Events * Schedules persons becoming newly infected through horizontal transmission * Schedules who will present for voluntary ("spontaneous") testing """
[docs] def __init__(self, module): super().__init__( module, frequency=DateOffset(months=12) ) # repeats every 12 months, but this can be changed
[docs] def apply(self, population): df = population.props p = self.module.parameters rng = self.module.rng fraction_of_year_between_polls = self.frequency.months / 12 beta = p["beta"] * fraction_of_year_between_polls # ----------------------------------- HORIZONTAL TRANSMISSION ----------------------------------- def horizontal_transmission(to_sex, from_sex): # Count current number of alive 15-80 year-olds at risk of transmission # (= those infected and not VL suppressed): n_infectious = len( df.loc[ df.is_alive & df.age_years.between(15, 80) & df.hv_inf & (df.hv_art != "on_VL_suppressed") & (df.sex == from_sex) ] ) if n_infectious > 0: # Get Susceptible (non-infected alive 15-80 year-old) persons: susc_idx = df.loc[ df.is_alive & ~df.hv_inf & df.age_years.between(15, 80) & (df.sex == to_sex) ].index n_susceptible = len(susc_idx) # Compute chance that each susceptible person becomes infected: # - relative chance of infection (acts like a scaling-factor on 'beta') rr_of_infection = self.module.lm["rr_of_infection"].predict( df.loc[susc_idx] ) # - probability of infection = beta * I/N p_infection = ( rr_of_infection * beta * (n_infectious / (n_infectious + n_susceptible)) ) # New infections: will_be_infected = ( self.module.rng.random_sample(len(p_infection)) < p_infection ) idx_new_infection = will_be_infected[will_be_infected].index idx_new_infection_fsw = [] # additional risk for fsw if to_sex == "F": fsw_at_risk = df.loc[ df.is_alive & ~df.hv_inf & df.li_is_sexworker & ~df.hv_is_on_prep & df.age_years.between(15, 80) ].index # - probability of infection - relative risk applies only to fsw p_infection_fsw = ( self.module.parameters["rr_fsw"] * beta * (n_infectious / (n_infectious + n_susceptible)) ) fsw_infected = ( self.module.rng.random_sample(len(fsw_at_risk)) < p_infection_fsw ) idx_new_infection_fsw = fsw_at_risk[fsw_infected] idx_new_infection = list(idx_new_infection) + list(idx_new_infection_fsw) # Schedule the date of infection for each new infection: for idx in idx_new_infection: date_of_infection = self.sim.date + pd.DateOffset( days=self.module.rng.randint(0, 365 * fraction_of_year_between_polls) ) self.sim.schedule_event( HivInfectionEvent(self.module, idx), date_of_infection ) # ----------------------------------- SPONTANEOUS TESTING ----------------------------------- def spontaneous_testing(current_year): # extract annual testing rates from MoH Reports test_rates = p["hiv_testing_rates"] testing_rate_adults = test_rates.loc[ test_rates.year == current_year, "annual_testing_rate_adults" ].values[0] * p["hiv_testing_rate_adjustment"] # adult testing trends also informed by demographic characteristics # relative probability of testing - this may skew testing rates higher or lower than moh reports rr_of_test = self.module.lm["lm_spontaneous_test_12m"].predict(df[df.is_alive & (df.age_years >= 15)]) mean_prob_test = (rr_of_test * testing_rate_adults).mean() scaled_prob_test = (rr_of_test * testing_rate_adults) / mean_prob_test overall_prob_test = scaled_prob_test * testing_rate_adults random_draw = rng.random_sample(size=len(df[df.is_alive & (df.age_years >= 15)])) adult_tests_idx = df.loc[df.is_alive & (df.age_years >= 15) & (random_draw < overall_prob_test)].index idx_will_test = adult_tests_idx for person_id in idx_will_test: date_test = self.sim.date + pd.DateOffset( days=self.module.rng.randint(0, 365 * fraction_of_year_between_polls) ) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_TestAndRefer(person_id=person_id, module=self.module, referred_from='HIV_poll'), priority=1, topen=date_test, tclose=date_test + pd.DateOffset( months=self.frequency.months ), # (to occur before next polling) ) # ----------------------------------- PrEP poll for AGYW ----------------------------------- def prep_for_agyw(): # select highest risk agyw agyw_idx = df.loc[ df.is_alive & ~df.hv_diagnosed & df.age_years.between(15, 30) & (df.sex == "F") & ~df.hv_is_on_prep ].index rr_of_infection_in_agyw = self.module.lm["rr_of_infection"].predict( df.loc[agyw_idx] ) # divide by the mean risk then multiply by prob of prep # highest risk AGYW will have highest probability of getting prep mean_risk = rr_of_infection_in_agyw.mean() scaled_risk = rr_of_infection_in_agyw / mean_risk overall_risk_and_prob_of_prep = scaled_risk * p["prob_prep_for_agyw"] # give prep give_prep = df.loc[( self.module.rng.random_sample(len(overall_risk_and_prob_of_prep)) < overall_risk_and_prob_of_prep) & df.is_alive & ~df.hv_diagnosed & df.age_years.between(15, 30) & (df.sex == "F") & ~df.hv_is_on_prep ].index for person in give_prep: self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartOrContinueOnPrep(person_id=person, module=self.module), priority=1, topen=self.sim.date, tclose=self.sim.date + pd.DateOffset( months=self.frequency.months ) ) # ----------------------------------- SPONTANEOUS VMMC FOR <15 YRS ----------------------------------- def vmmc_for_child(): """schedule the HSI_Hiv_Circ for <15 yrs males according to his age, circumcision status and the probability of being circumcised""" # work out who will be circumcised. will_go_to_circ = self.module.lm["lm_circ_child"].predict( df.loc[ df.is_alive & (df.sex == "M") & (df.age_years < 15) & (~df.li_is_circ) ], self.module.rng, year=self.sim.date.year, ) # schedule the HSI based on the probability for person_id in will_go_to_circ.loc[will_go_to_circ].index: self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_Circ(person_id=person_id, module=self.module), topen=self.sim.date, tclose=None, priority=0, ) # Horizontal transmission: Male --> Female horizontal_transmission(from_sex="M", to_sex="F") # Horizontal transmission: Female --> Male horizontal_transmission(from_sex="F", to_sex="M") # testing # if year later than 2020, set testing rates to those reported in 2020 if self.sim.date.year < 2021: current_year = self.sim.date.year else: current_year = 2020 spontaneous_testing(current_year=current_year) # PrEP for AGYW prep_for_agyw() # VMMC for <15 yrs in the population vmmc_for_child()
# --------------------------------------------------------------------------- # Natural History Events # ---------------------------------------------------------------------------
[docs] class HivInfectionEvent(Event, IndividualScopeEventMixin): """ This person will become infected. * Do the infection process * Check for onward transmission through MTCT if the infection is to a mother who is currently breastfeeding. """
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id)
[docs] def apply(self, person_id): df = self.sim.population.props # Check person is_alive if not df.at[person_id, "is_alive"]: return # Onset the infection for this person (which will schedule progression etc) self.module.do_new_infection(person_id) # Consider mother-to-child-transmission (MTCT) from this person to their children: children_of_this_person_being_breastfed = df.loc[ (df.mother_id == person_id) & (df.nb_breastfeeding_status != "none") ].index # - Do the MTCT routine for each child: for child_id in children_of_this_person_being_breastfed: self.module.mtct_during_breastfeeding(person_id, child_id)
[docs] class HivInfectionDuringBreastFeedingEvent(Event, IndividualScopeEventMixin): """ This person will become infected during breastfeeding * Do the infection process """
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id)
[docs] def apply(self, person_id): df = self.sim.population.props # Check person is_alive if not df.at[person_id, "is_alive"]: return # Check person is breastfed currently if df.at[person_id, "nb_breastfeeding_status"] == "none": return # If child is on NVP for HIV prophylaxis, then do not let the infection occur # (the prophylaxis is assumed to be perfectly effective in blocking transmission) if df.at[person_id, "hv_is_on_prep"]: return # Onset the infection for this person (which will schedule progression etc) self.module.do_new_infection(person_id)
[docs] class HivAidsOnsetEvent(Event, IndividualScopeEventMixin): """ This person has developed AIDS. * Update their symptomatic status * Record the date at which AIDS onset * Schedule the AIDS death """
[docs] def __init__(self, module, person_id, cause): super().__init__(module, person_id=person_id) self.cause = cause
[docs] def apply(self, person_id): df = self.sim.population.props # Return if person is dead or no HIV+ if not df.at[person_id, "is_alive"] or not df.at[person_id, "hv_inf"]: return # eligible for AIDS onset: # not VL suppressed no active tb # not VL suppressed active tb # VL suppressed active tb # Do nothing if person is now on ART and VL suppressed (non-VL suppressed has no effect) # if cause is TB, allow AIDS onset if (df.at[person_id, "hv_art"] == "on_VL_suppressed") and (self.cause != 'AIDS_TB'): return # need to delay onset of AIDS (non-tb) to compensate for AIDS-TB if (self.cause == "AIDS_non_TB") and ( self.sim.modules["Hiv"].rng.rand() < self.sim.modules["Hiv"].parameters["prop_delayed_aids_onset"]): # redraw time to aids and reschedule months_to_aids = int( np.floor( self.sim.modules["Hiv"].rng.exponential( scale=self.sim.modules["Hiv"].parameters["art_default_to_aids_mean_years"] ) * 12.0 ) ) self.sim.schedule_event( event=HivAidsOnsetEvent(person_id=person_id, module=self.sim.modules["Hiv"], cause='AIDS_non_TB'), date=self.sim.date + pd.DateOffset(months=months_to_aids), ) # else assign aids onset and schedule aids death else: # if eligible for aids onset (not treated with ART or currently has active TB): # Update Symptoms self.sim.modules["SymptomManager"].change_symptom( person_id=person_id, symptom_string="aids_symptoms", add_or_remove="+", disease_module=self.sim.modules["Hiv"], ) # Schedule AidsDeath date_of_aids_death = self.sim.date + self.sim.modules["Hiv"].get_time_from_aids_to_death() if self.cause == "AIDS_non_TB": # cause is HIV self.sim.schedule_event( event=HivAidsDeathEvent( person_id=person_id, module=self.sim.modules["Hiv"], cause=self.cause ), date=date_of_aids_death, ) # schedule hospital stay beddays = self.sim.modules["Hiv"].rng.randint(low=14, high=20) date_admission = date_of_aids_death - pd.DateOffset(days=beddays) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_EndOfLifeCare( person_id=person_id, module=self.sim.modules["Hiv"], beddays=beddays, ), priority=0, topen=( date_admission if (date_admission > self.sim.date) else self.sim.date ), tclose=date_of_aids_death, ) else: # cause is active TB self.sim.schedule_event( event=HivAidsTbDeathEvent( person_id=person_id, module=self.sim.modules["Hiv"], cause=self.cause ), date=date_of_aids_death, ) # schedule hospital stay beddays = self.sim.modules["Hiv"].rng.randint(low=14, high=20) date_admission = date_of_aids_death - pd.DateOffset(days=beddays) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_EndOfLifeCare( person_id=person_id, module=self.sim.modules["Hiv"], beddays=beddays, ), priority=0, topen=( date_admission if (date_admission >= self.sim.date) else self.sim.date ), tclose=date_of_aids_death, )
[docs] class HivAidsDeathEvent(Event, IndividualScopeEventMixin): """ Causes someone to die of AIDS, if they are not VL suppressed on ART. if death scheduled by tb-aids, death event is HivAidsTbDeathEvent if death scheduled by hiv but person also has active TB, cause of death is AIDS_TB """
[docs] def __init__(self, module, person_id, cause): super().__init__(module, person_id=person_id) self.cause = cause assert self.cause in ["AIDS_non_TB", "AIDS_TB"]
[docs] def apply(self, person_id): df = self.sim.population.props # Check person is_alive if not df.at[person_id, "is_alive"]: return # Do nothing if person is now on ART and VL suppressed (non VL suppressed has no effect) # only if no current TB infection if (df.at[person_id, "hv_art"] == "on_VL_suppressed") and ( df.at[person_id, "tb_inf"] != "active"): return # off ART, no TB infection if (df.at[person_id, "hv_art"] != "on_VL_suppressed") and ( df.at[person_id, "tb_inf"] != "active"): # cause is HIV (no TB) self.sim.modules["Demography"].do_death( individual_id=person_id, cause="AIDS_non_TB", originating_module=self.module, ) # on or off ART, active TB infection, schedule AidsTbDeathEvent if df.at[person_id, "tb_inf"] == "active": # cause is active TB self.sim.schedule_event( event=HivAidsTbDeathEvent( person_id=person_id, module=self.module, cause="AIDS_TB" ), date=self.sim.date, )
[docs] class HivAidsTbDeathEvent(Event, IndividualScopeEventMixin): """ This event is caused by someone co-infected with HIV and active TB it causes someone to die of AIDS-TB, death dependent on tb treatment status and not affected by ART status can be called by Tb or Hiv module if the random draw doesn't result in AIDS-TB death, an AIDS death (HivAidsDeathEvent) will be scheduled """
[docs] def __init__(self, module, person_id, cause): super().__init__(module, person_id=person_id) self.cause = cause
[docs] def apply(self, person_id): df = self.sim.population.props p = self.sim.modules["Hiv"].parameters # Check person is_alive if not df.at[person_id, "is_alive"]: return if df.at[person_id, 'tb_on_treatment']: risk_of_death = p["aids_tb_treatment_adjustment"] if "CardioMetabolicDisorders" in self.sim.modules: if df.at[person_id, "nc_diabetes"]: risk_of_death *= self.sim.modules["Tb"].parameters["rr_death_diabetes"] # treatment adjustment reduces probability of death if self.module.rng.rand() < risk_of_death: self.sim.modules["Demography"].do_death( individual_id=person_id, cause="AIDS_TB", originating_module=self.module, ) else: # if they survive, reschedule the aids death event # module calling rescheduled AIDS death should be Hiv (not TB) date_of_aids_death = self.sim.date + self.sim.modules["Hiv"].get_time_from_aids_to_death() self.sim.schedule_event( event=HivAidsDeathEvent( person_id=person_id, module=self.sim.modules["Hiv"], cause="AIDS_non_TB" ), date=date_of_aids_death, ) # schedule hospital stay beddays = self.module.rng.randint(low=14, high=20) date_admission = date_of_aids_death - pd.DateOffset(days=beddays) self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_EndOfLifeCare( person_id=person_id, module=self.sim.modules["Hiv"], beddays=beddays, ), priority=0, topen=( date_admission if (date_admission >= self.sim.date) else self.sim.date ), tclose=date_of_aids_death, ) # aids-tb and not on tb treatment elif not df.at[person_id, 'tb_on_treatment']: # Cause the death to happen immediately, cause defined by TB status self.sim.modules["Demography"].do_death( individual_id=person_id, cause="AIDS_TB", originating_module=self.module )
[docs] class Hiv_DecisionToContinueOnPrEP(Event, IndividualScopeEventMixin): """Helper event that is used to 'decide' if someone on PrEP should continue on PrEP. This event is scheduled by 'HSI_Hiv_StartOrContinueOnPrep' 3 months after it is run. """
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id)
[docs] def apply(self, person_id): df = self.sim.population.props person = df.loc[person_id] m = self.module # If the person is no longer alive or has been diagnosed with hiv, they will not continue on PrEP if ( (not person["is_alive"]) or (person["hv_diagnosed"]) ): return # Check that there are on PrEP currently: if not person["hv_is_on_prep"]: logger.warning( key="message", data="This event should not be running: Hiv_DecisionToContinueOnPrEP is for those currently on prep") # check still eligible, person must be <30 years old or a fsw if (person["age_years"] > 30) or not person["li_is_sexworker"]: return # Determine if this appointment is actually attended by the person who has already started on PrEP if ( m.rng.random_sample() < m.parameters["probability_of_being_retained_on_prep_every_3_months"] ): # Continue on PrEP - and schedule an HSI for a refill appointment today self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueOnPrep(person_id=person_id, module=m), topen=self.sim.date, tclose=self.sim.date + pd.DateOffset(days=7), priority=0, ) else: # Defaults to being off PrEP - reset flag and take no further action df.at[person_id, "hv_is_on_prep"] = False
[docs] class Hiv_DecisionToContinueTreatment(Event, IndividualScopeEventMixin): """Helper event that is used to 'decide' if someone on Treatment should continue on Treatment. This event is scheduled by 'HSI_Hiv_StartOrContinueTreatment' 3 months after it is run. """
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id)
[docs] def apply(self, person_id): df = self.sim.population.props person = df.loc[person_id] m = self.module if not person["is_alive"]: return # Check that they are on Treatment currently: if person["hv_art"] not in ["on_VL_suppressed", "on_not_VL_suppressed"]: logger.warning( key="message", data="This event should not be running, Hiv_DecisionToContinueTreatment is for those already on tx") # Determine if this appointment is actually attended by the person who has already started on ART if ( m.rng.random_sample() < m.parameters["probability_of_being_retained_on_art_every_3_months"] ): # Continue on Treatment - and schedule an HSI for a continuation appointment today self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueTreatment(person_id=person_id, module=m, facility_level_of_this_hsi="1a"), topen=self.sim.date, tclose=self.sim.date + pd.DateOffset(days=14), priority=0, ) else: # Defaults to being off Treatment m.stops_treatment(person_id) # refer for another treatment again in 1 month self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueTreatment(person_id=person_id, module=m, facility_level_of_this_hsi="1a"), topen=self.sim.date + pd.DateOffset(months=1), tclose=None, priority=0, )
[docs] class HivScaleUpEvent(Event, PopulationScopeEventMixin): """ This event exists to change parameters or functions depending on the scenario for projections which has been set It only occurs once on date: scaleup_start_date, called by initialise_simulation """
[docs] def __init__(self, module): super().__init__(module)
[docs] def apply(self, population): self.module.update_parameters_for_program_scaleup()
# --------------------------------------------------------------------------- # Health System Interactions (HSI) # ---------------------------------------------------------------------------
[docs] class HSI_Hiv_TestAndRefer(HSI_Event, IndividualScopeEventMixin): """ This is the Test-and-Refer HSI. Individuals may seek an HIV test at any time. From this, they can be referred on to other services. This event is scheduled by: * the main event poll, * when someone presents for any care through a Generic HSI. * when an infant is born to an HIV-positive mother Following the test, they may or may not go on to present for uptake an HIV service: ART (if HIV-positive), VMMC (if HIV-negative and male) or PrEP (if HIV-negative and a female sex worker). If this event is called within another HSI, it may be desirable to limit the functionality of the HSI: do this using the arguments: * do_not_refer_if_neg=False : if the person is HIV-neg they will not be referred to VMMC or PrEP * suppress_footprint=True : the HSI will not have any footprint """
[docs] def __init__( self, module, person_id, do_not_refer_if_neg=False, suppress_footprint=False, referred_from=None, ): super().__init__(module, person_id=person_id) assert isinstance(module, Hiv) assert isinstance(do_not_refer_if_neg, bool) self.do_not_refer_if_neg = do_not_refer_if_neg assert isinstance(suppress_footprint, bool) self.suppress_footprint = suppress_footprint self.referred_from = referred_from # Define the necessary information for an HSI self.TREATMENT_ID = "Hiv_Test" self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({"VCTNegative": 1}) self.ACCEPTED_FACILITY_LEVEL = "1a" self.counter_for_test_not_available = 0
[docs] def apply(self, person_id, squeeze_factor): """Do the testing and referring to other services""" df = self.sim.population.props person = df.loc[person_id] if not person["is_alive"]: return # If person is diagnosed and on treatment do nothing do not occupy any resources if person["hv_diagnosed"] and (person["hv_art"] != "not"): return self.sim.modules["HealthSystem"].get_blank_appt_footprint() # if person has had test in last week, do not repeat test if person["hv_last_test_date"] >= (self.sim.date - DateOffset(days=7)): return self.sim.modules["HealthSystem"].get_blank_appt_footprint() # Run test if person["age_years"] < 1.0: test_result = self.sim.modules["HealthSystem"].dx_manager.run_dx_test( dx_tests_to_run="hiv_early_infant_test", hsi_event=self ) else: test_result = self.sim.modules["HealthSystem"].dx_manager.run_dx_test( dx_tests_to_run="hiv_rapid_test", hsi_event=self ) if test_result is not None: # Update number of tests: df.at[person_id, "hv_number_tests"] += 1 df.at[person_id, "hv_last_test_date"] = self.sim.date # Log the test: line-list of summary information about each test person_details_for_test = { 'age': person['age_years'], 'hiv_status': person['hv_inf'], 'hiv_diagnosed': person['hv_diagnosed'], 'referred_from': self.referred_from, 'person_id': person_id } logger.info(key='hiv_test', data=person_details_for_test) # Offer services as needed: if test_result: # The test_result is HIV positive ACTUAL_APPT_FOOTPRINT = self.make_appt_footprint({"VCTPositive": 1}) # Update diagnosis if the person is indeed HIV positive; if person["hv_inf"]: df.at[person_id, "hv_diagnosed"] = True self.module.do_when_hiv_diagnosed(person_id=person_id) # Screen for tb if they have not been referred from a Tb HSI # and do not currently have TB diagnosis if "Tb" in self.sim.modules and (self.referred_from != 'Tb') and not person["tb_diagnosed"]: self.sim.modules["HealthSystem"].schedule_hsi_event( tb.HSI_Tb_ScreeningAndRefer( person_id=person_id, module=self.sim.modules["Tb"] ), topen=self.sim.date, tclose=None, priority=0, ) else: # The test_result is HIV negative ACTUAL_APPT_FOOTPRINT = self.make_appt_footprint({"VCTNegative": 1}) if not self.do_not_refer_if_neg: # The test was negative: make referrals to other services: # Consider if the person's risk will be reduced by behaviour change counselling if self.module.lm["lm_behavchg"].predict( df.loc[[person_id]], self.module.rng ): df.at[person_id, "hv_behaviour_change"] = True # If person is a man, and not circumcised, then consider referring to VMMC if (person["sex"] == "M") & (~person["li_is_circ"]): x = self.module.lm["lm_circ"].predict( df.loc[[person_id]], self.module.rng ) if x: self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_Circ(person_id=person_id, module=self.module), topen=self.sim.date, tclose=None, priority=0, ) # If person is a woman and FSW, and not currently on PrEP then consider referring to PrEP # available 2018 onwards if ( (person["sex"] == "F") & person["li_is_sexworker"] & ~person["hv_is_on_prep"] & (self.sim.date.year >= self.module.parameters["prep_start_year"]) ): if self.module.lm["lm_prep"].predict(df.loc[[person_id]], self.module.rng ): self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueOnPrep( person_id=person_id, module=self.module ), topen=self.sim.date, tclose=None, priority=0, ) else: # Test was not possible, set blank footprint and schedule another test ACTUAL_APPT_FOOTPRINT = self.make_appt_footprint({"VCTNegative": 1}) # set cap for number of repeat tests self.counter_for_test_not_available += 1 # The current appointment is included in the count. if ( self.counter_for_test_not_available <= self.module.parameters["hiv_healthseekingbehaviour_cap"] ): # repeat appt for HIV test self.sim.modules["HealthSystem"].schedule_hsi_event( self, topen=self.sim.date + pd.DateOffset(days=7), tclose=None, priority=0, ) # Return the footprint. If it should be suppressed, return a blank footprint. if self.suppress_footprint: return self.make_appt_footprint({}) else: return ACTUAL_APPT_FOOTPRINT
[docs] class HSI_Hiv_Circ(HSI_Event, IndividualScopeEventMixin):
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id) self.TREATMENT_ID = "Hiv_Prevention_Circumcision" self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({"MaleCirc": 1}) self.ACCEPTED_FACILITY_LEVEL = '1b' self.number_of_occurrences = 0
[docs] def apply(self, person_id, squeeze_factor): """ Do the circumcision for this man. If he is already circumcised, this is a follow-up appointment.""" self.number_of_occurrences += 1 # The current appointment is included in the count. df = self.sim.population.props # shortcut to the dataframe person = df.loc[person_id] # Do not run if the person is not alive if not person["is_alive"]: return # if person not circumcised, perform the procedure if not person["li_is_circ"]: # Check/log use of consumables, if materials available, do circumcision and schedule follow-up appts # If materials not available, repeat the HSI, i.e., first appt. if self.get_consumables(item_codes=self.module.item_codes_for_consumables_required['circ']): # Update circumcision state df.at[person_id, "li_is_circ"] = True # Add used equipment self.add_equipment({'Drip stand', 'Stool, adjustable height', 'Autoclave', 'Bipolar Diathermy Machine', 'Bed, adult', 'Trolley, patient'}) # Schedule follow-up appts # schedule first follow-up appt, 3 days from procedure; self.sim.modules["HealthSystem"].schedule_hsi_event( self, topen=self.sim.date + DateOffset(days=3), tclose=None, priority=0, ) # schedule second follow-up appt, 7 days from procedure; self.sim.modules["HealthSystem"].schedule_hsi_event( self, topen=self.sim.date + DateOffset(days=7), tclose=None, priority=0, ) else: # schedule repeating appt when consumables not available if ( self.number_of_occurrences <= self.module.parameters["hiv_healthseekingbehaviour_cap"] ): self.sim.modules["HealthSystem"].schedule_hsi_event( self, topen=self.sim.date + DateOffset(weeks=1), tclose=None, priority=0, )
[docs] class HSI_Hiv_StartInfantProphylaxis(HSI_Event, IndividualScopeEventMixin):
[docs] def __init__(self, module, person_id, referred_from, repeat_visits): super().__init__(module, person_id=person_id) assert isinstance(module, Hiv) self.TREATMENT_ID = "Hiv_Prevention_Infant" self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({"Peds": 1, "VCTNegative": 1}) self.ACCEPTED_FACILITY_LEVEL = '1a' self.referred_from = referred_from self.repeat_visits = repeat_visits
[docs] def apply(self, person_id, squeeze_factor): """ Start infant prophylaxis for this infant lasting for duration of breastfeeding or up to 18 months """ df = self.sim.population.props person = df.loc[person_id] # Do not run if the child is not alive or is diagnosed with hiv if not person["is_alive"] or person["hv_diagnosed"]: return self.sim.modules["HealthSystem"].get_blank_appt_footprint() # if breastfeeding has ceased or child >18 months, no further prophylaxis required if (df.at[person_id, "nb_breastfeeding_status"] == "none") \ or (df.at[person_id, "age_years"] >= 1.5): return self.sim.modules["HealthSystem"].get_blank_appt_footprint() # Check that infant prophylaxis is available and if it is, initiate: if self.get_consumables( item_codes={self.module.item_codes_for_consumables_required['infant_prep']: 63} ): df.at[person_id, "hv_is_on_prep"] = True # Schedule follow-up visit for 3 months time self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartInfantProphylaxis( person_id=person_id, module=self.module, referred_from="repeat3months", repeat_visits=0), priority=1, topen=self.sim.date + DateOffset(months=3), tclose=None, ) else: # infant does not get NVP now but has repeat visit scheduled up to 5 times df.at[person_id, "hv_is_on_prep"] = False if ( self.repeat_visits <= self.module.parameters["hiv_healthseekingbehaviour_cap"] ): self.repeat_visits += 1 # Schedule repeat visit for one week's time self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartInfantProphylaxis( person_id=person_id, module=self.module, referred_from="repeatNoCons", repeat_visits=self.repeat_visits), priority=1, topen=self.sim.date + pd.DateOffset(days=7), tclose=None, )
[docs] def never_ran(self, *args, **kwargs): """This is called if this HSI was never run. Default the person to being off PrEP""" self.sim.population.props.at[self.target, "hv_is_on_prep"] = False
[docs] class HSI_Hiv_StartOrContinueOnPrep(HSI_Event, IndividualScopeEventMixin):
[docs] def __init__(self, module, person_id): super().__init__(module, person_id=person_id) assert isinstance(module, Hiv) self.TREATMENT_ID = "Hiv_Prevention_Prep" self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({"PharmDispensing": 1, "VCTNegative": 1}) self.ACCEPTED_FACILITY_LEVEL = '1a' self.counter_for_drugs_not_available = 0
[docs] def apply(self, person_id, squeeze_factor): """Start PrEP for this person; or continue them on PrEP for 3 more months""" df = self.sim.population.props person = df.loc[person_id] # Do not run if the person is not alive or is diagnosed with hiv if ( (not person["is_alive"]) or (person["hv_diagnosed"]) ): return # Run an HIV test test_result = self.sim.modules["HealthSystem"].dx_manager.run_dx_test( dx_tests_to_run="hiv_rapid_test", hsi_event=self ) df.at[person_id, "hv_number_tests"] += 1 df.at[person_id, "hv_last_test_date"] = self.sim.date # If test is positive, flag as diagnosed and refer to ART if test_result is True: # label as diagnosed df.at[person_id, "hv_diagnosed"] = True # Do actions for when a person has been diagnosed with HIV self.module.do_when_hiv_diagnosed(person_id=person_id) return self.make_appt_footprint({"Over5OPD": 1, "VCTPositive": 1}) # Check that PrEP is available and if it is, initiate or continue PrEP: quantity_required = self.module.parameters['dispensation_period_months'] * 30 if self.get_consumables( item_codes={self.module.item_codes_for_consumables_required['prep']: quantity_required} ): df.at[person_id, "hv_is_on_prep"] = True # Schedule 'decision about whether to continue on PrEP' for 3 months time self.sim.schedule_event( Hiv_DecisionToContinueOnPrEP(person_id=person_id, module=self.module), self.sim.date + pd.DateOffset(months=3), ) else: # If PrEP is not available, the person will default and not be on PrEP df.at[person_id, "hv_is_on_prep"] = False self.counter_for_drugs_not_available += ( 1 # The current appointment is included in the count. ) if ( self.counter_for_drugs_not_available <= self.module.parameters["hiv_healthseekingbehaviour_cap"] ): # Schedule repeat visit for one week's time self.sim.modules["HealthSystem"].schedule_hsi_event( self, priority=1, topen=self.sim.date + pd.DateOffset(days=7), tclose=None, )
[docs] def never_ran(self): """This is called if this HSI was never run. Default the person to being off PrEP""" self.sim.population.props.at[self.target, "hv_is_on_prep"] = False
[docs] class HSI_Hiv_StartOrContinueTreatment(HSI_Event, IndividualScopeEventMixin):
[docs] def __init__(self, module, person_id, facility_level_of_this_hsi): super().__init__(module, person_id=person_id) assert isinstance(module, Hiv) self.TREATMENT_ID = "Hiv_Treatment" self.ACCEPTED_FACILITY_LEVEL = facility_level_of_this_hsi self.counter_for_drugs_not_available = 0 self.counter_for_did_not_run = 0
[docs] def apply(self, person_id, squeeze_factor): """This is a Health System Interaction Event - start or continue HIV treatment for 6 more months""" df = self.sim.population.props person = df.loc[person_id] art_status_at_beginning_of_hsi = person["hv_art"] if not person["is_alive"]: return # Confirm that the person is diagnosed (this should not run if they are not) assert person["hv_diagnosed"] # check whether person had Rx at least 3 months ago and is now due repeat prescription # alternate routes into testing/tx may mean person already has recent ARV dispensation if person['hv_date_last_ART'] > ( self.sim.date - pd.DateOffset(months=self.module.parameters['dispensation_period_months'])): return self.sim.modules["HealthSystem"].get_blank_appt_footprint() if art_status_at_beginning_of_hsi == "not": assert person[ "hv_inf" ] # after the test results, it can be guaranteed that the person is HIV-pos. # Try to initiate the person onto ART: drugs_were_available = self.do_at_initiation(person_id) else: # Try to continue the person on ART: drugs_were_available = self.do_at_continuation(person_id) # if ART is available (1st item in drugs_were_available dict) if drugs_were_available.get('art', False): df.at[person_id, 'hv_date_last_ART'] = self.sim.date # If person has been placed/continued on ART, schedule 'decision about whether to continue on Treatment self.sim.schedule_event( Hiv_DecisionToContinueTreatment( person_id=person_id, module=self.module ), self.sim.date + pd.DateOffset(months=self.module.parameters['dispensation_period_months']), ) else: # logger for drugs not available person_details_for_tx = { 'age': person['age_years'], 'facility_level': self.ACCEPTED_FACILITY_LEVEL, 'number_appts': self.counter_for_drugs_not_available, 'district': person['district_of_residence'], 'person_id': person_id, 'drugs_available': drugs_were_available, } logger.info(key='hiv_arv_NA', data=person_details_for_tx) # As drugs were not available, the person will default to being off ART (...if they were on ART at the # beginning of the HSI.) # NB. If the person was not on ART at the beginning of the HSI, then there is no need to stop them (which # causes a new AIDSOnsetEvent to be scheduled.) self.counter_for_drugs_not_available += 1 # The current appointment is included in the count. if art_status_at_beginning_of_hsi != "not": self.module.stops_treatment(person_id) p = self.module.parameters[ "probability_of_seeking_further_art_appointment_if_drug_not_available" ] if self.module.rng.random_sample() >= p: # add in referral straight back to tx # if defaulting, seek another treatment appointment in 6 months self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartOrContinueTreatment( person_id=person_id, module=self.module, facility_level_of_this_hsi="1a", ), topen=self.sim.date + pd.DateOffset(months=6), priority=0, ) else: # If person 'decides to' seek another treatment appointment, # schedule a new HSI appointment for next month # NB. With a probability of 1.0, this will keep occurring, # if person has already tried unsuccessfully to get ART at level 1a 2 times # then refer to level 1b if self.counter_for_drugs_not_available <= 2: # repeat attempt for ARVs at level 1a self.sim.modules["HealthSystem"].schedule_hsi_event( self, topen=self.sim.date + pd.DateOffset(months=1), priority=0, ) else: # refer to higher facility level self.sim.modules["HealthSystem"].schedule_hsi_event( hsi_event=HSI_Hiv_StartOrContinueTreatment( person_id=person_id, module=self.module, facility_level_of_this_hsi="2", ), topen=self.sim.date + pd.DateOffset(days=1), priority=0, ) # also screen for tb if "Tb" in self.sim.modules: self.sim.modules["HealthSystem"].schedule_hsi_event( tb.HSI_Tb_ScreeningAndRefer( person_id=person_id, module=self.sim.modules["Tb"] ), topen=self.sim.date, tclose=None, priority=0, )
[docs] def do_at_initiation(self, person_id): """Things to do when this the first appointment ART""" df = self.sim.population.props person = df.loc[person_id] # Check if drugs are available, and provide drugs # this will return a dict where the first item is ART and the second is cotrimoxazole drugs_available = self.get_drugs(age_of_person=person["age_years"]) # ART is first item in drugs_available dict if drugs_available.get('art', False): # Assign person to be suppressed or un-suppressed viral load # (If person is VL suppressed This will prevent the Onset of AIDS, or an AIDS death if AIDS has already # onset) vl_status = self.determine_vl_status( age_of_person=person["age_years"] ) df.at[person_id, "hv_art"] = vl_status df.at[person_id, "hv_date_treated"] = self.sim.date # If VL suppressed, remove any symptoms caused by this module if vl_status == "on_VL_suppressed": self.sim.modules["SymptomManager"].clear_symptoms( person_id=person_id, disease_module=self.module ) # if cotrimoxazole is available if drugs_available.get('cotrim', False): df.at[person_id, "hv_on_cotrimoxazole"] = True # Consider if TB treatment should start self.consider_tb(person_id) return drugs_available
[docs] def do_at_continuation(self, person_id): """Things to do when the person is already on ART""" df = self.sim.population.props person = df.loc[person_id] # default to person stopping cotrimoxazole df.at[person_id, "hv_on_cotrimoxazole"] = False # Viral Load Monitoring # NB. This does not have a direct effect on outcomes for the person. _ = self.get_consumables(item_codes=self.module.item_codes_for_consumables_required['vl_measurement']) # Check if drugs are available, and provide drugs: drugs_available = self.get_drugs(age_of_person=person["age_years"]) # if cotrimoxazole is available, update person's property if drugs_available.get('cotrim', False): df.at[person_id, "hv_on_cotrimoxazole"] = True return drugs_available
[docs] def determine_vl_status(self, age_of_person): """Helper function to determine the VL status that the person will have. Return what will be the status of "hv_art" """ prob_vs = self.module.prob_viral_suppression(self.sim.date.year, age_of_person) return ( "on_VL_suppressed" if (self.module.rng.random_sample() < prob_vs) else "on_not_VL_suppressed" )
[docs] def get_drugs(self, age_of_person): """Helper function to get the ART according to the age of the person being treated. Returns dict to indicate whether individual drugs were available""" p = self.module.parameters dispensation_days = 30 * self.module.parameters['dispensation_period_months'] if age_of_person < p["ART_age_cutoff_young_child"]: # Formulation for young children drugs_available = self.get_consumables( item_codes={self.module.item_codes_for_consumables_required[ 'First line ART regimen: young child']: dispensation_days * 2}, optional_item_codes={self.module.item_codes_for_consumables_required[ 'First line ART regimen: young child: cotrimoxazole']: dispensation_days * 240}, return_individual_results=True) elif age_of_person <= p["ART_age_cutoff_older_child"]: # Formulation for older children drugs_available = self.get_consumables( item_codes={self.module.item_codes_for_consumables_required[ 'First line ART regimen: older child']: dispensation_days * 3}, optional_item_codes={self.module.item_codes_for_consumables_required[ 'First line ART regimen: older child: cotrimoxazole']: dispensation_days * 480}, return_individual_results=True) else: # Formulation for adults drugs_available = self.get_consumables( item_codes={self.module.item_codes_for_consumables_required[ 'First-line ART regimen: adult']: dispensation_days}, optional_item_codes={self.module.item_codes_for_consumables_required[ 'First-line ART regimen: adult: cotrimoxazole']: dispensation_days * 960}, return_individual_results=True) # add drug names to dict drugs_available = { 'art': list(drugs_available.values())[0], 'cotrim': list(drugs_available.values())[1] } return drugs_available
[docs] def consider_tb(self, person_id): """ screen for tb Consider whether IPT is needed at this time. This is run only when treatment is initiated. """ if "Tb" in self.sim.modules: self.sim.modules["Tb"].consider_ipt_for_those_initiating_art( person_id=person_id )
[docs] def never_ran(self): """This is called if this HSI was never run. * Default the person to being off ART. * Determine if they will re-seek care themselves in the future: """ # stop treatment for this person person_id = self.target self.module.stops_treatment(person_id) # sample whether person will seek further appt if self.module.rng.random_sample() < self.module.parameters[ "probability_of_seeking_further_art_appointment_if_appointment_not_available" ]: # schedule HSI self.sim.modules["HealthSystem"].schedule_hsi_event( HSI_Hiv_StartOrContinueTreatment( person_id=person_id, module=self.module, facility_level_of_this_hsi="1a" ), topen=self.sim.date + pd.DateOffset(days=14), tclose=self.sim.date + pd.DateOffset(days=21), priority=1, )
@property def EXPECTED_APPT_FOOTPRINT(self): """Returns the appointment footprint for this person according to their current status: * `NewAdult` for an adult, newly starting treatment * `EstNonCom` for an adult, re-starting treatment or already on treatment (NB. This is an appointment type that assumes that the patient does not have complications.) * `Peds` for a child - whether newly starting or already on treatment """ person_id = self.target if self.sim.population.props.at[person_id, 'age_years'] < 15: return self.make_appt_footprint({"Peds": 1}) # Child if (self.sim.population.props.at[person_id, 'hv_art'] == "not") & ( pd.isna(self.sim.population.props.at[person_id, 'hv_date_treated']) ): return self.make_appt_footprint({"NewAdult": 1}) # Adult newly starting treatment else: return self.make_appt_footprint({"EstNonCom": 1}) # Adult already on treatment
[docs] class HSI_Hiv_EndOfLifeCare(HSI_Event, IndividualScopeEventMixin): """ this is a hospital stay for terminally-ill patients with AHD it does not affect disability weight or probability of death no consumables are logged but health system capacity (HR) is allocated there are no consequences if hospital bed is not available as person has scheduled death already within 2 weeks """
[docs] def __init__(self, module, person_id, beddays=17): super().__init__(module, person_id=person_id) assert isinstance(module, Hiv) self.TREATMENT_ID = "Hiv_PalliativeCare" self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({}) self.ACCEPTED_FACILITY_LEVEL = "2" self.beddays = beddays self.BEDDAYS_FOOTPRINT = self.make_beddays_footprint({"general_bed": self.beddays})
[docs] def apply(self, person_id, squeeze_factor): df = self.sim.population.props hs = self.sim.modules["HealthSystem"] if not df.at[person_id, "is_alive"]: return hs.get_blank_appt_footprint() if df.at[person_id, "hv_art"] == "virally_suppressed": return hs.get_blank_appt_footprint() logger.debug( key="message", data=f"HSI_Hiv_EndOfLifeCare: inpatient admission for {person_id}", )
# --------------------------------------------------------------------------- # Logging # ---------------------------------------------------------------------------
[docs] class HivLoggingEvent(RegularEvent, PopulationScopeEventMixin):
[docs] def __init__(self, module): """ Log Current status of the population, every year """ self.repeat = 12 super().__init__(module, frequency=DateOffset(months=self.repeat))
[docs] def apply(self, population): # get some summary statistics df = population.props now = self.sim.date # ------------------------------------ SUMMARIES ------------------------------------ # population pop_male_15plus = len( df[df.is_alive & (df.age_years >= 15) & (df.sex == "M")] ) pop_female_15plus = len( df[df.is_alive & (df.age_years >= 15) & (df.sex == "F")] ) # plhiv male_plhiv = len( df[df.hv_inf & df.is_alive & (df.age_years >= 15) & (df.sex == "M")] ) female_plhiv = len( df[df.hv_inf & df.is_alive & (df.age_years >= 15) & (df.sex == "F")] ) child_plhiv = len(df[df.hv_inf & df.is_alive & (df.age_years < 15)]) total_plhiv = len(df[df.hv_inf & df.is_alive]) # adult prevalence adult_prev_15plus = len( df[df.hv_inf & df.is_alive & (df.age_years >= 15)] ) / len(df[df.is_alive & (df.age_years >= 15)]) if len(df[df.is_alive & (df.age_years >= 15)]) else 0 adult_prev_1549 = len( df[df.hv_inf & df.is_alive & df.age_years.between(15, 49)] ) / len(df[df.is_alive & df.age_years.between(15, 49)]) if len( df[df.is_alive & df.age_years.between(15, 49)]) else 0 # child prevalence child_prev = len( df[df.hv_inf & df.is_alive & (df.age_years < 15)] ) / len(df[df.is_alive & (df.age_years < 15)] ) if len(df[df.is_alive & (df.age_years < 15)]) else 0 # incidence in the period since the last log for 15+ and 15-49 year-olds (denominator is approximate) n_new_infections_adult_15plus = len( df.loc[ (df.age_years >= 15) & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_adults_15plus = len(df[df.is_alive & (df.age_years >= 15)]) adult_inc_15plus = n_new_infections_adult_15plus / denom_adults_15plus if denom_adults_15plus else 0 n_new_infections_adult_1549 = len( df.loc[ df.age_years.between(15, 49) & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_adults_1549 = len(df[df.is_alive & df.age_years.between(15, 49)]) adult_inc_1549 = n_new_infections_adult_1549 / denom_adults_1549 if denom_adults_1549 else 0 # incidence in the period since the last log for 0-14 year-olds (denominator is approximate) n_new_infections_children = len( df.loc[ (df.age_years < 15) & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_children = len(df[df.is_alive & (df.age_years < 15)]) child_inc = n_new_infections_children / denom_children if denom_children else 0 # hiv prev among female sex workers (aged 15-49) n_fsw = len( df.loc[ df.is_alive & df.li_is_sexworker & (df.sex == "F") & df.age_years.between(15, 49) ] ) prev_hiv_fsw = ( 0 if n_fsw == 0 else len( df.loc[ df.is_alive & df.hv_inf & df.li_is_sexworker & (df.sex == "F") & df.age_years.between(15, 49) ] ) / n_fsw ) total_population = len(df.loc[df.is_alive]) logger.info( key="summary_inc_and_prev_for_adults_and_children_and_fsw", description="Summary of HIV among adult (15+ and 15-49) and children (0-14s) and female sex workers" " (15-49)", data={ "pop_male_15plus": pop_male_15plus, "pop_female_15plus": pop_female_15plus, "pop_child": denom_children, "pop_total": total_population, "male_plhiv_15plus": male_plhiv, "female_plhiv_15plus": female_plhiv, "child_plhiv": child_plhiv, "total_plhiv": total_plhiv, "hiv_prev_adult_15plus": adult_prev_15plus, "hiv_prev_adult_1549": adult_prev_1549, "hiv_prev_child": child_prev, "hiv_adult_inc_15plus": adult_inc_15plus, "n_new_infections_adult_1549": n_new_infections_adult_1549, "hiv_adult_inc_1549": adult_inc_1549, "hiv_child_inc": child_inc, "hiv_prev_fsw": prev_hiv_fsw, }, ) # store some outputs in dict for calibration self.module.hiv_outputs["date"] += [self.sim.date.year] self.module.hiv_outputs["hiv_prev_adult_1549"] += [adult_prev_1549] self.module.hiv_outputs["hiv_adult_inc_1549"] += [adult_inc_1549] self.module.hiv_outputs["hiv_prev_child"] += [child_prev] self.module.hiv_outputs["population"] += [total_population] # ------------------------------------ PREVALENCE BY AGE and SEX ------------------------------------ # Prevalence by Age/Sex (to make every category be output, do separately by 'sex') prev_by_age_and_sex = {} for sex in ["F", "M"]: n_hiv = df.loc[df.sex == sex].groupby(by=["age_range"])["hv_inf"].sum() n_pop = df.loc[df.sex == sex].groupby(by=["age_range"])["hv_inf"].count() prev_by_age_and_sex[sex] = (n_hiv / n_pop).to_dict() logger.info( key="prev_by_age_and_sex", data=prev_by_age_and_sex, description="Prevalence of HIV split by age and sex", ) male_prev_1524 = len( df[df.hv_inf & df.is_alive & df.age_years.between(15, 24) & (df.sex == "M")] ) / len(df[df.is_alive & df.age_years.between(15, 24) & (df.sex == "M")]) if len( df[df.is_alive & df.age_years.between(15, 24) & (df.sex == "M")]) else 0 male_prev_2549 = len( df[df.hv_inf & df.is_alive & df.age_years.between(25, 49) & (df.sex == "M")] ) / len(df[df.is_alive & df.age_years.between(25, 49) & (df.sex == "M")]) if len( df[df.is_alive & df.age_years.between(25, 49) & (df.sex == "M")]) else 0 female_prev_1524 = len( df[df.hv_inf & df.is_alive & df.age_years.between(15, 24) & (df.sex == "F")] ) / len(df[df.is_alive & df.age_years.between(15, 24) & (df.sex == "F")]) if len( df[df.is_alive & df.age_years.between(15, 24) & (df.sex == "F")]) else 0 female_prev_2549 = len( df[df.hv_inf & df.is_alive & df.age_years.between(25, 49) & (df.sex == "F")] ) / len(df[df.is_alive & df.age_years.between(25, 49) & (df.sex == "F")]) if len( df[df.is_alive & df.age_years.between(25, 49) & (df.sex == "F")]) else 0 total_prev = len( df[df.hv_inf & df.is_alive] ) / len(df[df.is_alive]) # incidence by age-group and sex n_new_infections_male_1524 = len( df.loc[ df.age_years.between(15, 24) & (df.sex == "M") & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_male_1524 = len(df[ df.is_alive & (df.sex == "M") & df.age_years.between(15, 24)]) male_inc_1524 = n_new_infections_male_1524 / denom_male_1524 if denom_male_1524 else 0 n_new_infections_male_2549 = len( df.loc[ df.age_years.between(25, 49) & (df.sex == "M") & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_male_2549 = len(df[ df.is_alive & (df.sex == "M") & df.age_years.between(25, 49)]) male_inc_2549 = n_new_infections_male_2549 / denom_male_2549 if denom_male_2549 else 0 n_new_infections_male_1549 = len( df.loc[ df.age_years.between(15, 49) & (df.sex == "M") & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) n_new_infections_female_1524 = len( df.loc[ df.age_years.between(15, 24) & (df.sex == "F") & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_female_1524 = len(df[ df.is_alive & (df.sex == "F") & df.age_years.between(15, 24)]) female_inc_1524 = n_new_infections_female_1524 / denom_female_1524 if denom_female_1524 else 0 n_new_infections_female_2549 = len( df.loc[ df.age_years.between(25, 49) & (df.sex == "F") & df.is_alive & (df.hv_date_inf >= (now - DateOffset(months=self.repeat))) ] ) denom_female_2549 = len(df[ df.is_alive & (df.sex == "F") & df.age_years.between(25, 49)]) female_inc_2549 = n_new_infections_female_2549 / denom_female_2549 if denom_female_2549 else 0 logger.info( key="infections_by_2age_groups_and_sex", data={ "male_prev_1524": male_prev_1524, "male_prev_2549": male_prev_2549, "female_prev_1524": female_prev_1524, "female_prev_2549": female_prev_2549, "total_prev": total_prev, "n_new_infections_male_1524": n_new_infections_male_1524, "n_new_infections_male_2549": n_new_infections_male_2549, "n_new_infections_male_1549": n_new_infections_male_1549, "n_new_infections_female_1524": n_new_infections_female_1524, "n_new_infections_female_2549": n_new_infections_female_2549, "male_inc_1524": male_inc_1524, "male_inc_2549": male_inc_2549, "female_inc_1524": female_inc_1524, "female_inc_2549": female_inc_2549, }, description="HIV infections split by 2 age-groups age and sex", ) logger.info( key="prev_by_age_and_sex", data=prev_by_age_and_sex, description="Prevalence of HIV split by age and sex", ) # ------------------------------------ TESTING ------------------------------------ # testing can happen through lm[spontaneous_testing] or symptom-driven or ANC or TB # proportion of adult population tested in past year n_tested = len( df.loc[ df.is_alive & (df.hv_number_tests > 0) & (df.age_years >= 15) & (df.hv_last_test_date >= (now - DateOffset(months=self.repeat))) ] ) n_pop = len(df.loc[df.is_alive & (df.age_years >= 15)]) tested = n_tested / n_pop if n_pop else 0 # proportion of adult population tested in past year by sex testing_by_sex = {} for sex in ["F", "M"]: n_tested = len( df.loc[ (df.sex == sex) & (df.hv_number_tests > 0) & (df.age_years >= 15) & (df.hv_last_test_date >= (now - DateOffset(months=self.repeat))) ] ) n_pop = len(df.loc[(df.sex == sex) & (df.age_years >= 15)]) testing_by_sex[sex] = n_tested / n_pop if n_pop else 0 # per_capita_testing_rate: number of tests administered divided by population current_testing_rate = self.module.per_capita_testing_rate() # testing yield: number positive results divided by number tests performed # if person has multiple tests in one year, will only count 1 total_tested = len( df.loc[(df.hv_number_tests > 0) & (df.hv_last_test_date >= (now - DateOffset(months=self.repeat))) ] ) total_tested_hiv_positive = len( df.loc[df.hv_inf & (df.hv_number_tests > 0) & (df.hv_last_test_date >= (now - DateOffset(months=self.repeat))) ] ) testing_yield = total_tested_hiv_positive / total_tested if total_tested > 0 else 0 # ------------------------------------ TREATMENT ------------------------------------ def treatment_counts(subset): # total number of subset (subset is a true/false series) count = sum(subset) # proportion of subset living with HIV that are diagnosed: proportion_diagnosed = ( sum(subset & df.hv_diagnosed) / count if count > 0 else 0.0 ) # proportions of subset living with HIV on treatment: art = sum(subset & (df.hv_art != "not")) art_cov = art / count if count > 0 else 0.0 # proportion of subset on treatment that have good VL suppression art_vs = sum(subset & (df.hv_art == "on_VL_suppressed")) art_cov_vs = art_vs / art if art > 0 else 0.0 return proportion_diagnosed, art_cov, art_cov_vs alive_infected = df.is_alive & df.hv_inf dx_adult, art_cov_adult, art_cov_vs_adult = treatment_counts( alive_infected & (df.age_years >= 15) ) dx_children, art_cov_children, art_cov_vs_children = treatment_counts( alive_infected & (df.age_years < 15) ) n_on_art_male_15plus = len( df.loc[ (df.age_years >= 15) & (df.sex == "M") & df.is_alive & (df.hv_art != "not") ] ) n_on_art_female_15plus = len( df.loc[ (df.age_years >= 15) & (df.sex == "F") & df.is_alive & (df.hv_art != "not") ] ) n_on_art_children = len( df.loc[ (df.age_years < 15) & df.is_alive & (df.hv_art != "not") ] ) n_on_art_total = n_on_art_male_15plus + n_on_art_female_15plus + n_on_art_children # ------------------------------------ BEHAVIOUR CHANGE ------------------------------------ # proportion of adults (15+) exposed to behaviour change intervention prop_adults_exposed_to_behav_intv = len( df[df.is_alive & df.hv_behaviour_change & (df.age_years >= 15)] ) / len(df[df.is_alive & (df.age_years >= 15)]) if len(df[df.is_alive & (df.age_years >= 15)]) else 0 # ------------------------------------ PREP AMONG FSW ------------------------------------ prop_fsw_on_prep = ( 0 if n_fsw == 0 else len( df[ df.is_alive & df.li_is_sexworker & (df.age_years >= 15) & df.hv_is_on_prep ] ) / len(df[df.is_alive & df.li_is_sexworker & (df.age_years >= 15)]) ) if len(df[df.is_alive & df.li_is_sexworker & (df.age_years >= 15)]) else 0 # ------------------------------------ MALE CIRCUMCISION ------------------------------------ # NB. Among adult men prop_men_circ = len( df[df.is_alive & (df.sex == "M") & (df.age_years >= 15) & df.li_is_circ] ) / len(df[df.is_alive & (df.sex == "M") & (df.age_years >= 15)]) if len( df[df.is_alive & (df.sex == "M") & (df.age_years >= 15)]) else 0 logger.info( key="hiv_program_coverage", description="Coverage of interventions for HIV among adult (15+) and children (0-14s)", data={ "number_adults_tested": n_tested, "prop_tested_adult": tested, "prop_tested_adult_male": testing_by_sex["M"], "prop_tested_adult_female": testing_by_sex["F"], "per_capita_testing_rate": current_testing_rate, "testing_yield": testing_yield, "dx_adult": dx_adult, "dx_childen": dx_children, "art_coverage_adult": art_cov_adult, "art_coverage_adult_VL_suppression": art_cov_vs_adult, "art_coverage_child": art_cov_children, "art_coverage_child_VL_suppression": art_cov_vs_children, "n_on_art_total": n_on_art_total, "n_on_art_male_15plus": n_on_art_male_15plus, "n_on_art_female_15plus": n_on_art_female_15plus, "n_on_art_children": n_on_art_children, "prop_adults_exposed_to_behav_intv": prop_adults_exposed_to_behav_intv, "prop_fsw_on_prep": prop_fsw_on_prep, "prop_men_circ": prop_men_circ, }, ) # ------------------------------------ TREATMENT DELAYS ------------------------------------ # for every person initiated on treatment, record time from onset to treatment # each year a series of intervals in days (treatment date - onset date) are recorded # convert to list # adults # get index of adults starting tx in last time-period adult_tx_idx = df.loc[(df.age_years >= 16) & (df.hv_date_treated >= (now - DateOffset(months=self.repeat)))].index # calculate treatment_date - onset_date for each person in index adult_tx_delays = (df.loc[adult_tx_idx, "hv_date_treated"] - df.loc[adult_tx_idx, "hv_date_inf"]).dt.days adult_tx_delays = adult_tx_delays.tolist() # children child_tx_idx = df.loc[(df.age_years < 16) & (df.hv_date_treated >= (now - DateOffset(months=self.repeat)))].index child_tx_delays = (df.loc[child_tx_idx, "hv_date_treated"] - df.loc[child_tx_idx, "hv_date_inf"]).dt.days child_tx_delays = child_tx_delays.tolist() logger.info( key="hiv_treatment_delays", description="HIV time from onset to treatment", data={ "HivTreatmentDelayAdults": adult_tx_delays, "HivTreatmentDelayChildren": child_tx_delays, }, )
# --------------------------------------------------------------------------- # Debugging / Checking Events # ---------------------------------------------------------------------------
[docs] class HivCheckPropertiesEvent(RegularEvent, PopulationScopeEventMixin):
[docs] def __init__(self, module): super().__init__(module, frequency=DateOffset(months=1)) # runs every month
[docs] def apply(self, population): self.module.check_config_of_properties()
# --------------------------------------------------------------------------- # Helper functions for analysing outputs # --------------------------------------------------------------------------- def set_age_group(ser): AGE_RANGE_CATEGORIES, AGE_RANGE_LOOKUP = create_age_range_lookup( min_age=demography.MIN_AGE_FOR_RANGE, max_age=demography.MAX_AGE_FOR_RANGE, range_size=demography.AGE_RANGE_SIZE, ) ser = ser.astype("category") AGE_RANGE_CATEGORIES_filtered = [a for a in AGE_RANGE_CATEGORIES if a in ser.values] return ser.cat.reorder_categories(AGE_RANGE_CATEGORIES_filtered) def map_to_age_group(ser): AGE_RANGE_CATEGORIES, AGE_RANGE_LOOKUP = create_age_range_lookup( min_age=demography.MIN_AGE_FOR_RANGE, max_age=demography.MAX_AGE_FOR_RANGE, range_size=demography.AGE_RANGE_SIZE, ) ser = ser.map(AGE_RANGE_LOOKUP) ser = set_age_group(ser) return ser def unpack_raw_output_dict(raw_dict): x = pd.DataFrame.from_dict(data=raw_dict, orient="index") x.reset_index(inplace=True) x.rename(columns={"index": "age_group", 0: "value"}, inplace=True) x["age_group"] = set_age_group(x["age_group"]) return x # --------------------------------------------------------------------------- # Dummy Version of the Module # ---------------------------------------------------------------------------
[docs] class DummyHivModule(Module): """Dummy HIV Module - it's only job is to create and maintain the 'hv_inf' and 'hv_art' properties. This can be used in test files.""" INIT_DEPENDENCIES = {"Demography"} ALTERNATIVE_TO = {"Hiv"} PROPERTIES = { "hv_inf": Property(Types.BOOL, "DUMMY version of the property for hv_inf"), "hv_art": Property(Types.CATEGORICAL, "DUMMY version of the property for hv_art.", categories=["not", "on_VL_suppressed", "on_not_VL_suppressed"]), }
[docs] def __init__(self, name=None, hiv_prev=0.1, art_cov=0.75): super().__init__(name) self.hiv_prev = hiv_prev self.art_cov = art_cov
[docs] def read_parameters(self, data_folder): pass
[docs] def initialise_population(self, population): df = population.props df.loc[df.is_alive, "hv_inf"] = self.rng.rand(sum(df.is_alive)) < self.hiv_prev df.loc[(df.is_alive & df.hv_inf), "hv_art"] = pd.Series( self.rng.rand(sum(df.is_alive & df.hv_inf)) < self.art_cov).replace( {True: "on_VL_suppressed", False: "not"}).values
[docs] def initialise_simulation(self, sim): pass
[docs] def on_birth(self, mother, child): df = self.sim.population.props df.at[child, "hv_inf"] = self.rng.rand() < self.hiv_prev if df.at[child, "hv_inf"]: df.at[child, "hv_art"] = "on_VL_suppressed" if self.rng.rand() < self.art_cov else "not"