"""
Childhood Acute Lower Respiratory Infection Module
Overview
--------
Individuals are exposed to the risk of infection by a pathogen (and potentially also with a bacterial
co-infection / secondary infection) that can cause one of two types of acute lower respiratory infection (Alri)
modelled in TLO.
The disease is manifested as either pneumonia or other alri (including bronchiolitis).
During an episode (prior to recovery - either naturally or cured with treatment), symptoms are manifested
and there may be complications (e.g. local pulmonary complication: pleural effusion, empyema, lung abscess,
pneumothorax; and/or systemic complications: sepsis; and/or complications regarding oxygen exchange: hypoxaemia.
The complications are onset at the time of disease onset.
The individual may recover naturally or die. The risk of death depends on the type of disease and the presence of some
of the complications.
Health care seeking is prompted by the onset of the symptom. The individual can be treated; if successful the risk of
death is lowered and the person is "cured" (symptom resolved) some days later.
"""
from __future__ import annotations
from collections import defaultdict
from itertools import chain
from pathlib import Path
from typing import TYPE_CHECKING, Dict, List, Tuple, Union
import numpy as np
import pandas as pd
from tlo import DAYS_IN_YEAR, DateOffset, Module, Parameter, Property, Types, logging
from tlo.events import Event, IndividualScopeEventMixin, PopulationScopeEventMixin, RegularEvent
from tlo.lm import LinearModel, LinearModelType, Predictor
from tlo.methods import Metadata
from tlo.methods.causes import Cause
from tlo.methods.hsi_event import HSI_Event
from tlo.methods.hsi_generic_first_appts import GenericFirstAppointmentsMixin
from tlo.methods.symptommanager import Symptom
from tlo.util import random_date, sample_outcome
if TYPE_CHECKING:
from tlo.methods.hsi_generic_first_appts import HSIEventScheduler
from tlo.population import IndividualProperties
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Helper function for conversion between odds and probabilities
to_odds = lambda pr: pr / (1.0 - pr) # noqa: E731
to_prob = lambda odds: odds / (1.0 + odds) # noqa: E731
# ---------------------------------------------------------------------------------------------------------
# MODULE DEFINITION
# ---------------------------------------------------------------------------------------------------------
[docs]
class Alri(Module, GenericFirstAppointmentsMixin):
"""This is the disease module for Acute Lower Respiratory Infections."""
INIT_DEPENDENCIES = {
'Demography',
'Epi',
'Hiv',
'Lifestyle',
'NewbornOutcomes',
'SymptomManager',
'Wasting',
}
OPTIONAL_INIT_DEPENDENCIES = {'HealthBurden'}
# Declare Metadata
METADATA = {
Metadata.DISEASE_MODULE,
Metadata.USES_SYMPTOMMANAGER,
Metadata.USES_HEALTHSYSTEM,
Metadata.USES_HEALTHBURDEN
}
pathogens = {
'viral': [
'RSV',
'Rhinovirus',
'HMPV',
'Parainfluenza',
'Influenza',
'other_viral_pathogens' # <-- Coronaviruses NL63, 229E OC43 and HKU1,
# Cytomegalovirus, Parechovirus/Enterovirus, Adenovirus, Bocavirus
],
'bacterial': [
'Strep_pneumoniae_PCV13', # <-- risk of acquisition is affected by the pneumococcal vaccine
'Strep_pneumoniae_non_PCV13', # <-- risk of acquisition is not affected by the pneumococcal vaccine
'Hib',
'H.influenzae_non_type_b',
'Staph_aureus',
'Enterobacteriaceae', # includes E. coli, Enterobacter species, and Klebsiella species
'other_Strepto_Enterococci', # includes Streptococcus pyogenes and Enterococcus faecium
'other_bacterial_pathogens'
# <-- includes Bordetella pertussis, Chlamydophila pneumoniae,
# Legionella species, Mycoplasma pneumoniae, Moraxella catarrhalis, Non-fermenting gram-negative
# rods (Acinetobacter species and Pseudomonas species), Neisseria meningitidis
],
'fungal/other': [
'P.jirovecii',
'other_pathogens_NoS'
]
}
# Make set of all pathogens combined:
all_pathogens = sorted(set(chain.from_iterable(pathogens.values())))
# Declare Causes of Death
CAUSES_OF_DEATH = {
f"ALRI_{path}": Cause(gbd_causes={'Lower respiratory infections'}, label='Lower respiratory infections')
for path in all_pathogens
}
# Declare Causes of Disability
CAUSES_OF_DISABILITY = {
f"ALRI_{path}": Cause(gbd_causes={'Lower respiratory infections'}, label='Lower respiratory infections')
for path in all_pathogens
}
# Declare the disease types:
disease_types = sorted({
'pneumonia',
'other_alri'
})
classifications = sorted({
'danger_signs_pneumonia',
'fast_breathing_pneumonia',
'chest_indrawing_pneumonia',
'cough_or_cold'
})
all_symptoms = sorted({
'cough',
'difficult_breathing',
'cyanosis',
'fever',
'tachypnoea',
'chest_indrawing',
'danger_signs'
})
# Declare the Alri complications:
complications = sorted({
'pneumothorax',
'pleural_effusion',
'empyema',
'lung_abscess',
'sepsis',
'hypoxaemia'
})
# Declare the antibiotics that can be used
antibiotics = sorted({
'Amoxicillin_tablet_or_suspension_3days',
'Amoxicillin_tablet_or_suspension_5days',
'Amoxicillin_tablet_or_suspension_7days',
'1st_line_IV_antibiotics',
})
PARAMETERS = {
# Incidence rate by pathogens -----
'base_inc_rate_ALRI_by_RSV':
Parameter(Types.LIST,
'baseline incidence rate of Alri caused by RSV in age groups 0-11, 12-23, 24-59 months, '
'per child per year'
),
'base_inc_rate_ALRI_by_Rhinovirus':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Rhinovirus in age groups 0-11, 12-23, 24-59 months, '
'per child per year'
),
'base_inc_rate_ALRI_by_HMPV':
Parameter(Types.LIST,
'baseline incidence of Alri caused by HMPV in age groups 0-11, 12-23, 24-59 months, '
'per child per year'
),
'base_inc_rate_ALRI_by_Parainfluenza':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Parainfluenza 1-4 in age groups 0-11, 12-23, 24-59 months, '
'per child per year'
),
'base_inc_rate_ALRI_by_Strep_pneumoniae_PCV13':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Streptoccocus pneumoniae PCV13 serotype '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_Strep_pneumoniae_non_PCV13':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Streptoccocus pneumoniae non PCV13 serotype '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_Hib':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Haemophilus influenzae type b '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_H.influenzae_non_type_b':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Haemophilus influenzae non-type b '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_Enterobacteriaceae':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Enterobacteriaceae in age groups 0-11, 12-23, '
'24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_other_Strepto_Enterococci':
Parameter(Types.LIST,
'baseline incidence of Alri caused by other streptococci and Enterococci including '
'Streptococcus pyogenes and Enterococcus faecium in age groups 0-11, 12-23, 24-59 months, '
'per child per year'
),
'base_inc_rate_ALRI_by_Staph_aureus':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Staphylococcus aureus '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_Influenza':
Parameter(Types.LIST,
'baseline incidence of Alri caused by Influenza type A, B, and C '
'in age groups 0-11, 12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_P.jirovecii':
Parameter(Types.LIST,
'baseline incidence of Alri caused by P. jirovecii in age groups 0-11, '
'12-23, 24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_other_viral_pathogens':
Parameter(Types.LIST,
'baseline incidence of Alri caused by other viral pathogens in age groups 0-11, 12-23, '
'24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_other_bacterial_pathogens':
Parameter(Types.LIST,
'baseline incidence of Alri caused by other viral pathogens in age groups 0-11, 12-23, '
'24-59 months, per child per year'
),
'base_inc_rate_ALRI_by_other_pathogens_NoS':
Parameter(Types.LIST,
'baseline incidence of Alri caused by other pathogens not otherwise specified'
' in age groups 0-11, 12-23, 24-59 months, per child per year'
),
# Proportions of what disease type (pneumonia/ bronchiolitis/ other alri) -----
'proportion_pneumonia_in_RSV_ALRI':
Parameter(Types.LIST,
'proportion of RSV-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Rhinovirus_ALRI':
Parameter(Types.LIST,
'proportion of Rhinovirus-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_HMPV_ALRI':
Parameter(Types.LIST,
'proportion of HMPV-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Parainfluenza_ALRI':
Parameter(Types.LIST,
'proportion of Parainfluenza-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Strep_pneumoniae_PCV13_ALRI':
Parameter(Types.LIST,
'proportion of S. pneumoniae PCV13-type-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Strep_pneumoniae_non_PCV13_ALRI':
Parameter(Types.LIST,
'proportion of S. pneumoniae non PCV13-type-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Hib_ALRI':
Parameter(Types.LIST,
'proportion of Hib ALRI-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_H.influenzae_non_type_b_ALRI':
Parameter(Types.LIST,
'proportion of H.influenzae non type-b-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Staph_aureus_ALRI':
Parameter(Types.LIST,
'proportion of S. aureus-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Enterobacteriaceae_ALRI':
Parameter(Types.LIST,
'proportion of Enterobacteriaceae-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_other_Strepto_Enterococci_ALRI':
Parameter(Types.LIST,
'proportion of other Streptococci- and Enterococci-attributed ALRI manifesting as pneumonia'
'by age, (based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_Influenza_ALRI':
Parameter(Types.LIST,
'proportion of Influenza-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_P.jirovecii_ALRI':
Parameter(Types.LIST,
'proportion of P. jirovecii-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_other_viral_pathogens_ALRI':
Parameter(Types.LIST,
'proportion of other viral pathogens-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_other_bacterial_pathogens_ALRI':
Parameter(Types.LIST,
'proportion of other bacterial pathogens-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
'proportion_pneumonia_in_other_pathogens_NoS_ALRI':
Parameter(Types.LIST,
'proportion of other pathogens NoS-attributed ALRI manifesting as pneumonia by age, '
'(based on PERCH CXR+ results)'
),
# Risk factors for incidence infection -----
'rr_ALRI_HIV/AIDS':
Parameter(Types.REAL,
'relative rate of acquiring Alri for children with HIV+/AIDS '
),
'rr_ALRI_incomplete_measles_immunisation':
Parameter(Types.REAL,
'relative rate of acquiring Alri for children with incomplete measles immunisation'
),
'rr_ALRI_low_birth_weight':
Parameter(Types.REAL,
'relative rate of acquiring Alri for infants with low birth weight'
),
'rr_ALRI_non_exclusive_breastfeeding':
Parameter(Types.REAL,
'relative rate of acquiring Alri for not exclusive breastfeeding upto 6 months'
),
'rr_ALRI_indoor_air_pollution':
Parameter(Types.REAL,
'relative rate of acquiring Alri for indoor air pollution'
),
# Probability of bacterial co- / secondary infection -----
'prob_viral_pneumonia_bacterial_coinfection':
Parameter(Types.REAL,
'probability of primary viral pneumonia having a bacterial co-infection'
),
'proportion_bacterial_coinfection_pathogen':
Parameter(Types.LIST,
'list of proportions of each bacterial pathogens in a viral/bacterial co-infection pneumonia,'
'the current values used are the pathogen attributable fractions (AFs) from PERCH for all ages. '
'The AFs were scaled to bacterial pathogens only causes - value assumed to be the proportions '
'of bacterial pathogens causing co-/secondary infection'
),
# Duration of disease - natural history
'max_alri_duration_in_days_without_treatment':
Parameter(Types.REAL,
'maximum duration in days of untreated ALRI episode, assuming an average of 7 days'
),
# Probability of complications -----
'overall_progression_to_severe_ALRI':
Parameter(Types.REAL,
'probability of progression to severe ALRI'
),
'prob_pulmonary_complications_in_pneumonia':
Parameter(Types.REAL,
'probability of pulmonary complications in (CXR+) pneumonia'
),
'prob_pleural_effusion_in_pulmonary_complicated_pneumonia':
Parameter(Types.REAL,
'probability of pleural effusion in pneumonia with pulmonary complications'
),
'prob_empyema_in_pulmonary_complicated_pneumonia':
Parameter(Types.REAL,
'probability of empyema in pneumonia with pulmonary complications'
),
'prob_lung_abscess_in_pulmonary_complicated_pneumonia':
Parameter(Types.REAL,
'probability of lung abscess in pneumonia with pulmonary complications'
),
'prob_pneumothorax_in_pulmonary_complicated_pneumonia':
Parameter(Types.REAL,
'probability of pneumothorax in pneumonia with pulmonary complications'
),
'prob_hypoxaemia_in_pneumonia':
Parameter(Types.REAL,
'probability of hypoxaemia in pneumonia cases'
),
'prob_hypoxaemia_in_other_alri':
Parameter(Types.REAL,
'probability of hypoxaemia in bronchiolitis and other alri cases'
),
'prob_bacteraemia_in_pneumonia':
Parameter(Types.REAL,
'probability of bacteraemia in pneumonia'
),
'prob_progression_to_sepsis_with_bacteraemia':
Parameter(Types.REAL,
'probability of progression to sepsis from bactereamia'
),
'proportion_hypoxaemia_with_SpO2<90%':
Parameter(Types.REAL,
'proportion of hypoxaemic children with SpO2 <90%'
),
# Risk of death parameters -----
'scaler_on_risk_of_death':
Parameter(Types.REAL,
"Multiplicative scaler on the overall risk of death, for the purpose of calibration."
),
'base_odds_death_ALRI_age<2mo':
Parameter(Types.REAL,
'baseline odds of death from ALRI for young infants aged 0 month and severe pneumonia '
'(base group)'
),
'or_death_ALRI_age<2mo_very_severe_pneumonia':
Parameter(Types.REAL,
'odds ratio of death from ALRI for young infants with very severe pneumonia'
),
'or_death_ALRI_age<2mo_P.jirovecii':
Parameter(Types.REAL,
'odds ratio of death from ALRI for young infants with P. jirovecii infection'
),
'or_death_ALRI_age<2mo_by_month_increase_in_age':
Parameter(Types.REAL,
'odds ratio of death from ALRI for young infants by 1 month increase in age (1 month olds)'
),
'base_odds_death_ALRI_age2_59mo':
Parameter(Types.REAL,
'baseline odds of death from ALRI for children aged 2 months, male, no SAM, '
'and non-severe pneumonia classification (base group)'
),
'or_death_ALRI_age2_59mo_female':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children who are female'
),
'or_death_ALRI_age2_59mo_very_severe_pneumonia':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with very severe pneumonia'
),
'or_death_ALRI_age2_59mo_P.jirovecii':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with P. jirovecii infection'
),
'or_death_ALRI_age2_59mo_by_month_increase_in_age':
Parameter(Types.REAL,
'odds ratio of death from ALRI by 1 month increase in age for 2 to 59 months olds'
),
'or_death_ALRI_age2_59mo_SAM':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with severe acute malnutrition'
),
'or_death_ALRI_SpO2<90%':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with oxygen saturation < 90%, '
'base group: SpO2 <=93%'
),
'or_death_ALRI_SpO2_90_92%':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with oxygen saturation between 09 to 92%, '
'base group: SpO2 <=93%'
),
'or_death_ALRI_sepsis':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with complication of sepsis (compared to if not)'
),
'or_death_ALRI_pneumothorax':
Parameter(Types.REAL,
'odds ratio of death from ALRI for children with complication of pneumothorax (compared to if '
'not)'
),
# Probability of symptom development -----
'prob_cough_in_pneumonia':
Parameter(Types.REAL,
'probability of cough in pneumonia'
),
'prob_difficult_breathing_in_pneumonia':
Parameter(Types.REAL,
'probability of difficulty breathing in pneumonia'
),
'prob_fever_in_pneumonia':
Parameter(Types.REAL,
'probability of fever in pneumonia'
),
'prob_chest_indrawing_in_pneumonia':
Parameter(Types.REAL,
'probability of chest indrawing in pneumonia'
),
'prob_tachypnoea_in_pneumonia':
Parameter(Types.REAL,
'probability of tachypnoea in pneumonia'
),
'prob_danger_signs_in_pneumonia':
Parameter(Types.REAL,
'probability of any danger sign in pneumonia, including: : unable to drink, convulsions, '
'cyanosis, head nodding/bobbing, irritability, abnormally sleepy, lethargy, '
'nasal flaring, grunting'
),
'prob_cough_in_other_alri':
Parameter(Types.REAL,
'probability of cough in bronchiolitis or other alri'
),
'prob_difficult_breathing_in_other_alri':
Parameter(Types.REAL,
'probability of difficulty breathing in bronchiolitis or other alri'
),
'prob_fever_in_other_alri':
Parameter(Types.REAL,
'probability of fever in bronchiolitis or other alri'
),
'prob_tachypnoea_in_other_alri':
Parameter(Types.REAL,
'probability of tachypnoea in bronchiolitis or other alri'
),
'prob_chest_indrawing_in_other_alri':
Parameter(Types.REAL,
'probability of chest wall indrawing in bronchiolitis or other alri'
),
'prob_danger_signs_in_other_alri':
Parameter(Types.REAL,
'probability of any danger signs in bronchiolitis or other alri'
),
'prob_danger_signs_in_sepsis':
Parameter(Types.REAL,
'probability of any danger signs in ALRI complicated by sepsis'
),
'prob_danger_signs_in_SpO2<90%':
Parameter(Types.REAL,
'probability of any danger signs in children with SpO2 <90%'
),
'prob_danger_signs_in_SpO2_90-92%':
Parameter(Types.REAL,
'probability of any danger signs in children with SpO2 between 90-92%'
),
'prob_chest_indrawing_in_SpO2<90%':
Parameter(Types.REAL,
'probability of chest indrawing in children with SpO2 <90%'
),
'prob_chest_indrawing_in_SpO2_90-92%':
Parameter(Types.REAL,
'probability of chest indrawing in children with SpO2 between 90-92%'
),
'prob_cyanosis_in_other_alri':
Parameter(Types.REAL,
'probability of cyanosis in bronchiolitis or other alri'
), # N.B. This is not used
'prob_cyanosis_in_pneumonia':
Parameter(Types.REAL,
'probability of cyanosis in pneumonia'
), # N.B. This is not used
'prob_cyanosis_in_SpO2<90%':
Parameter(Types.REAL,
'probability of cyanosis when SpO2 < 90%'
),
# Parameters governing the effects of vaccine ----------------
'rr_Strep_pneum_VT_ALRI_with_PCV13_age<2y':
Parameter(Types.REAL,
'relative rate of acquiring S. pneumoniae vaccine-type Alri '
'for children under 2 years of age immunised wth PCV13'
),
'rr_Strep_pneum_VT_ALRI_with_PCV13_age2to5y':
Parameter(Types.REAL,
'relative rate of acquiring S. pneumoniae vaccine-type Alri '
'for children aged 2 to 5 immunised wth PCV13'
),
'rr_all_strains_Strep_pneum_ALRI_with_PCV13':
Parameter(Types.REAL,
'relative rate of acquiring S. pneumoniae all types Alri '
'for children immunised wth PCV13'
),
'effectiveness_Hib_vaccine_on_Hib_strains':
Parameter(Types.REAL,
'effectiveness of Hib vaccine against H. influenzae typ-b ALRI'
),
'rr_Hib_ALRI_with_Hib_vaccine':
Parameter(Types.REAL,
'relative rate of acquiring H. influenzae type-b Alri '
'for children immunised wth Hib vaccine'
),
# Parameters governing treatment effectiveness and associated behaviours ----------------
'days_between_treatment_and_cure':
Parameter(Types.INT, 'number of days between any treatment being given in an HSI and the cure occurring.'
),
'tf_1st_line_antibiotic_for_severe_pneumonia':
Parameter(Types.REAL,
'Risk of treatment failure for a person with danger_signs_pneumonia being treated with first line'
'intravenous antibiotics'
),
'rr_tf_1st_line_antibiotics_if_cyanosis':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has the symptom of cyanosis.'
'having that symptom.'
),
'rr_tf_1st_line_antibiotics_if_SpO2<90%':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has oxygen saturation < 90%.'
),
'rr_tf_1st_line_antibiotics_if_abnormal_CXR':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has a disease_type of "pneumonia".'
),
'rr_tf_1st_line_antibiotics_if_MAM':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has un_clinical_acute_malnutrition == "MAM".'
),
'rr_tf_1st_line_antibiotics_if_SAM':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has un_clinical_acute_malnutrition == "SAM".'
),
'rr_tf_1st_line_antibiotics_if_HIV/AIDS':
Parameter(Types.REAL,
'Relative Risk for treatment failure for persons with danger_signs_pneumonia being treated with '
'first line intravenous antibiotics if the person has HIV and is not currently being treated.'
),
'or_mortality_improved_oxygen_systems':
Parameter(Types.REAL,
'Odds Ratio for the effect of oxygen provision to a person that needs oxygen who receives it, '
'compares to a patient who does not. N.B. The inverse of this is used to reflect the increase in '
'odds of death for a patient that needs oxygen but does not receive it.'
),
'tf_3day_amoxicillin_for_fast_breathing_with_SpO2>=90%':
Parameter(Types.REAL,
'probability of treatment failure by day 6 or relapse by day 14 of 3-day course amoxicillin for'
' treating fast-breathing pneumonia'
),
'tf_3day_amoxicillin_for_chest_indrawing_with_SpO2>=90%':
Parameter(Types.REAL,
'probability of treatment failure by day 6 or relapse by day 14 of 3-day course amoxicillin for '
'treating chest-indrawing pneumonia without hypoxaemia (SpO2>=90%)'
),
'tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%':
Parameter(Types.REAL,
'probability of treatment failure by day 6 or relapse by day 14 of 5-day course amoxicillin for '
'treating chest-indrawing pneumonia without hypoxaemia (SpO2>=90%)'
),
'tf_7day_amoxicillin_for_fast_breathing_pneumonia_in_young_infants':
Parameter(Types.REAL,
'probability of treatment failure by day 6 or relapse by day 14 of 5-day course amoxicillin for '
'treating chest-indrawing pneumonia without hypoxaemia (SpO2>=90%)'
),
'tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2>=90%':
Parameter(Types.REAL,
'probability of treatment failure by day 2 for oral amoxicillin given to severe pneumonia '
'(danger-signs) without hypoxaemia (SpO2>=93%)'
),
'tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%':
Parameter(Types.REAL,
'probability of treatment failure or relapse'
'for oral amoxicillin given to non-severe pneumonia (fast-breathing or chest-indrawing) with'
' hypoxaemia (SpO2<90%)'
),
'tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2<90%':
Parameter(Types.REAL,
'probability of treatment failure or relapsefor oral amoxicillin given to severe pneumonia '
'(danger-signs) with hypoxaemia (SpO2<90%)'
),
'tf_2nd_line_antibiotic_for_severe_pneumonia':
Parameter(Types.REAL,
'probability of treatment failure by end of IV therapy for 2nd line antibiotic either cloxacillin'
' or ceftriaxone to treat severe pneumonia (danger-signs)'
), # N.B. This parameter is not used.
# sensitivities for correct classification by health workers
'sensitivity_of_classification_of_fast_breathing_pneumonia_facility_level0':
Parameter(Types.REAL,
'sensitivity of correct classification and treatment decision by the HSA trained in iCCM,'
' using paper-based tools, for fast-breathing pneumonia'
),
'sensitivity_of_classification_of_danger_signs_pneumonia_facility_level0':
Parameter(Types.REAL,
'sensitivity of correct classification and referral decision by the HSA trained in iCCM,'
' using paper-based tools, for danger-signs pneumonia'
),
'sensitivity_of_classification_of_non_severe_pneumonia_facility_level1':
Parameter(Types.REAL,
'sensitivity of correct classification and treatment decision for non-severe pneumonia '
'at facility level 1a and 1b'
),
'sensitivity_of_classification_of_severe_pneumonia_facility_level1':
Parameter(Types.REAL,
'sensitivity of correct classification and referral decision for severe pneumonia '
'at facility level 1a and 1b'
),
'sensitivity_of_classification_of_non_severe_pneumonia_facility_level2':
Parameter(Types.REAL,
'sensitivity of correct classification and treatment decision for non-severe pneumonia '
'at facility level 2'
),
'sensitivity_of_classification_of_severe_pneumonia_facility_level2':
Parameter(Types.REAL,
'sensitivity of correct classification and treatment decision for severe pneumonia '
'at facility level 2'
),
'prob_iCCM_severe_pneumonia_treated_as_fast_breathing_pneumonia':
Parameter(Types.REAL,
'probability of misdiagnosis of iCCM severe pneumonia (with chest-indrawing or danger signs) '
'given treatment for non-severe pneumonia (fast-breathing) '
'at facility level O'
),
'prob_IMCI_severe_pneumonia_treated_as_non_severe_pneumonia':
Parameter(Types.REAL,
'probability of misdiagnosis of IMCI severe pneumonia (with danger signs) '
'given treatment for non-severe pneumonia ( fast-breathing or chest-indrawing) '
'at facility level 1a/1b/2'
),
'or_care_seeking_perceived_severe_illness':
Parameter(Types.REAL,
'The Odds Ratio for healthcare seeking for the symptom of chest-indrawing'
),
'pulse_oximeter_and_oxygen_is_available':
Parameter(Types.CATEGORICAL,
'Control the availability of the pulse oximeter and oxygen. "Default" does not over-ride '
'availability; "Yes" forces them to be available; "No" forces them to not be available',
categories=['Yes', 'No', 'Default']
),
'prob_for_followup_if_treatment_failure':
Parameter(Types.REAL,
'The probability for scheduling a follow-up appointment following treatment failure'
),
}
PROPERTIES = {
# ---- Alri status ----
'ri_current_infection_status':
Property(Types.BOOL,
'Does the person currently have an infection with a pathogen that can cause Alri.'
),
# ---- The pathogen which is the attributed cause of Alri ----
'ri_primary_pathogen':
Property(Types.CATEGORICAL,
'If infected, what is the pathogen with which the person is currently infected. (np.nan if not '
'infected)',
categories=list(all_pathogens)
),
# ---- The bacterial pathogen which is the attributed co-/secondary infection ----
'ri_secondary_bacterial_pathogen':
Property(Types.CATEGORICAL,
'If infected, is there a secondary bacterial pathogen (np.nan if none or not applicable)',
categories=list(pathogens['bacterial'])
),
# ---- The underlying Alri condition ----
'ri_disease_type':
Property(Types.CATEGORICAL, 'If infected, what disease type is the person currently suffering from.',
categories=disease_types
),
# ---- The peripheral oxygen saturation level ----
'ri_SpO2_level':
Property(Types.CATEGORICAL, 'Peripheral oxygen saturation level (Sp02), measure for hypoxaemia',
categories=['<90%', '90-92%', '>=93%']
),
# ---- Treatment Status ----
'ri_on_treatment': Property(Types.BOOL, 'Is this person currently receiving treatment.'),
# < --- (N.B. Other properties of the form 'ri_complication_{complication-name}' are added later.) -->
# ---- Internal variables to schedule onset and deaths due to Alri ----
'ri_start_of_current_episode': Property(Types.DATE,
'date of onset of current Alri event (pd.NaT is not infected)'),
'ri_scheduled_recovery_date': Property(Types.DATE,
'(scheduled) date of recovery from current Alri event (pd.NaT is not '
'infected or episode is scheduled to end in death)'),
'ri_scheduled_death_date': Property(Types.DATE,
'(scheduled) date of death caused by current Alri event (pd.NaT is not '
'infected or episode will not cause death)'),
'ri_end_of_current_episode': Property(Types.DATE,
'date on which the last episode of Alri is resolved, (including allowing '
'for the possibility that a cure is scheduled following onset). This is '
'used to determine when a new episode can begin. This stops successive'
' episodes interfering with one another.'),
}
[docs]
def __init__(self, name=None, resourcefilepath=None, log_indivdual=None, do_checks=False):
super().__init__(name)
# Store arguments provided
self.resourcefilepath = resourcefilepath
self.do_checks = do_checks
assert (log_indivdual is None or isinstance(log_indivdual, int)) and (not isinstance(log_indivdual, bool))
self.log_individual = log_indivdual
# Initialise the pointer to where the models will be stored:
self.models = None
# Maximum duration of an episode (beginning with infection and ending with recovery)
self.max_duration_of_episode = None
# dict to hold the DALY weights
self.daly_wts = dict()
# store the consumables needed
self.consumables_used_in_hsi = dict()
# Pointer to store the logging event used by this module
self.logging_event = None
[docs]
def read_parameters(self, data_folder):
"""
* Setup parameters values used by the module
* Define symptoms
"""
self.load_parameters_from_dataframe(
pd.read_excel(Path(self.resourcefilepath) / 'ResourceFile_Alri.xlsx', sheet_name='Parameter_values')
)
self.check_params_read_in_ok()
self.define_symptoms()
[docs]
def check_params_read_in_ok(self):
"""Check that every value has been read-in successfully"""
for param_name, param_type in self.PARAMETERS.items():
assert param_name in self.parameters, f'Parameter "{param_name}" ' \
f'is not read in correctly from the resourcefile.'
assert param_name is not None, f'Parameter "{param_name}" is not read in correctly from the resourcefile.'
assert isinstance(self.parameters[param_name],
param_type.python_type), f'Parameter "{param_name}" ' \
f'is not read in correctly from the resourcefile.'
[docs]
def define_symptoms(self):
"""Define the symptoms that this module will use"""
for symptom_name in sorted(self.all_symptoms):
if symptom_name not in self.sim.modules['SymptomManager'].generic_symptoms:
if symptom_name == 'danger_signs':
self.sim.modules['SymptomManager'].register_symptom(
Symptom.emergency(name=symptom_name, which='children')
)
elif symptom_name == 'chest_indrawing':
self.sim.modules['SymptomManager'].register_symptom(
Symptom(name=symptom_name,
odds_ratio_health_seeking_in_children=self.parameters[
'or_care_seeking_perceived_severe_illness']))
else:
self.sim.modules['SymptomManager'].register_symptom(
Symptom(name=symptom_name))
# (Associates the symptoms with the 'average' healthcare seeking, apart from "danger_signs", which
# is an emergency symptom in children, and "chest_indrawing" which does have increased healthcare
# seeking.)
[docs]
def pre_initialise_population(self):
"""Define columns for complications at run-time"""
for complication in self.complications:
Alri.PROPERTIES[f"ri_complication_{complication}"] = Property(
Types.BOOL, f"Whether this person has complication {complication}"
)
[docs]
def initialise_population(self, population):
"""
Sets that there is no one with Alri at initiation.
"""
df = population.props # a shortcut to the data-frame storing data for individuals
# ---- Key Current Status Classification Properties ----
df.loc[df.is_alive, 'ri_current_infection_status'] = False
df.loc[df.is_alive, 'ri_primary_pathogen'] = np.nan
df.loc[df.is_alive, 'ri_secondary_bacterial_pathogen'] = np.nan
df.loc[df.is_alive, 'ri_disease_type'] = np.nan
df.loc[df.is_alive, [f"ri_complication_{complication}" for complication in self.complications]] = False
df.loc[df.is_alive, 'ri_SpO2_level'] = ">=93%"
# ---- Internal values ----
df.loc[df.is_alive, 'ri_start_of_current_episode'] = pd.NaT
df.loc[df.is_alive, 'ri_scheduled_recovery_date'] = pd.NaT
df.loc[df.is_alive, 'ri_scheduled_death_date'] = pd.NaT
df.loc[df.is_alive, 'ri_end_of_current_episode'] = pd.NaT
df.loc[df.is_alive, 'ri_on_treatment'] = False
[docs]
def initialise_simulation(self, sim):
"""
Prepares for simulation:
* Schedules the main polling event
* Schedules the main logging event
* Establishes the linear models and other data structures using the parameters that have been read-in
"""
p = self.parameters
# Schedule the main polling event (to first occur immediately)
sim.schedule_event(AlriPollingEvent(self), sim.date)
# Schedule the main logging event (to first occur in one year)
self.logging_event = AlriLoggingEvent(self)
sim.schedule_event(self.logging_event, sim.date + DateOffset(days=364))
if self.log_individual is not None:
# Schedule the individual check logging event (to first occur immediately, and to occur every day)
sim.schedule_event(AlriIndividualLoggingEvent(self), sim.date)
if self.do_checks:
# Schedule the event that does checking every day:
sim.schedule_event(AlriCheckPropertiesEvent(self), sim.date)
# Generate the model that determine the Natural History of the disease:
self.models = Models(self)
# Get DALY weights
if 'HealthBurden' in self.sim.modules.keys():
self.daly_wts['daly_non_severe_ALRI'] = self.sim.modules['HealthBurden'].get_daly_weight(sequlae_code=47)
self.daly_wts['daly_severe_ALRI'] = self.sim.modules['HealthBurden'].get_daly_weight(sequlae_code=46)
# Define the max episode duration
self.max_duration_of_episode = DateOffset(
days=p['max_alri_duration_in_days_without_treatment'] + p['days_between_treatment_and_cure']
)
# Look-up and store the consumables that are required for each HSI
self.look_up_consumables()
# override consumables availability
self.over_ride_availability_of_certain_consumables()
[docs]
def on_birth(self, mother_id, child_id):
"""Initialise properties for a newborn individual.
This is called by the simulation whenever a new person is born.
:param mother_id: the mother for this child
:param child_id: the new child
"""
df = self.sim.population.props
# ---- Key Current Status Classification Properties ----
df.at[child_id, 'ri_current_infection_status'] = False
df.loc[child_id, ['ri_primary_pathogen',
'ri_secondary_bacterial_pathogen',
'ri_disease_type']] = np.nan
df.loc[child_id, [f"ri_complication_{complication}" for complication in self.complications]] = False
df.at[child_id, 'ri_SpO2_level'] = ">=93%"
# ---- Internal values ----
df.loc[child_id, ['ri_start_of_current_episode',
'ri_scheduled_recovery_date',
'ri_scheduled_death_date',
'ri_end_of_current_episode']] = pd.NaT
df.at[child_id, 'ri_on_treatment'] = False
[docs]
def report_daly_values(self):
"""Report DALY incurred in the population in the last month due to ALRI"""
df = self.sim.population.props
# get the list of people with severe pneumonia: danger signs AND either cough or difficult breathing
has_danger_signs = set(self.sim.modules['SymptomManager'].who_has('danger_signs')) & set(
self.sim.modules['SymptomManager'].who_has('cough')).union(
self.sim.modules['SymptomManager'].who_has('difficult_breathing')
)
# get the list of people with non-severe pneumonia
has_fast_breathing_or_chest_indrawing_but_not_danger_signs = set(
self.sim.modules['SymptomManager'].who_has('tachypnoea')
).union(
self.sim.modules['SymptomManager'].who_has('chest_indrawing')
) - has_danger_signs
# report the DALYs occurred
total_daly_values = pd.Series(data=0.0, index=df.index[df.is_alive])
total_daly_values.loc[
sorted(has_danger_signs)
] = self.daly_wts['daly_severe_ALRI']
total_daly_values.loc[
sorted(has_fast_breathing_or_chest_indrawing_but_not_danger_signs)
] = self.daly_wts['daly_non_severe_ALRI']
# Split out by pathogen that causes the Alri
dummies_for_pathogen = pd.get_dummies(df.loc[total_daly_values.index, 'ri_primary_pathogen'], dtype='float')
daly_values_by_pathogen = dummies_for_pathogen.mul(total_daly_values, axis=0)
# add prefix to label according to the name of the causes of disability declared
daly_values_by_pathogen = daly_values_by_pathogen.add_prefix('ALRI_')
return daly_values_by_pathogen
[docs]
def over_ride_availability_of_certain_consumables(self):
"""Over-ride the availability of certain consumables, according the parameter values provided."""
p = self.parameters
item_code_pulse_oximeter = list(self.consumables_used_in_hsi['Pulse_oximetry'].keys())
item_code_oxygen = list(self.consumables_used_in_hsi['Oxygen_Therapy'].keys())
all_item_codes = list(set(item_code_pulse_oximeter + item_code_oxygen))
if p['pulse_oximeter_and_oxygen_is_available'] in ('Yes', 'No'):
over_ride = {
_item: (1.0 if p['pulse_oximeter_and_oxygen_is_available'] == "Yes" else 0.0)
for _item in all_item_codes
}
self.sim.modules['HealthSystem'].override_availability_of_consumables(over_ride)
[docs]
def look_up_consumables(self):
"""Look up and store the consumables item codes used in each of the HSI."""
get_item_code = self.sim.modules['HealthSystem'].get_item_code_from_item_name
# # # # # # Dosages by weight # # # # # #
# Assuming average weight of 0-5 is 12kg (abstraction). Doses sourced for WHO Pocket book of hospital care for
# children: Second edition 2014
# Antibiotic therapy -------------------
# Antibiotics for non-severe pneumonia - oral amoxicillin for 5 days (40mg/kg BD - ((12*40)*2)*5 =4800mg)
self.consumables_used_in_hsi['Amoxicillin_tablet_or_suspension_5days'] = {
get_item_code(item='Amoxycillin 250mg_1000_CMST'): 4800,
get_item_code(item='Amoxycillin 125mg/5ml suspension, PFR_0.025_CMST'): 192} # 25mg/ml - 4800/25
# Antibiotics for non-severe pneumonia - oral amoxicillin for 3 days (40mg/kg BD - ((12*40)*2)*3 =2880mg)
self.consumables_used_in_hsi['Amoxicillin_tablet_or_suspension_3days'] = {
get_item_code(item='Amoxycillin 250mg_1000_CMST'): 2880,
get_item_code(item='Amoxycillin 125mg/5ml suspension, PFR_0.025_CMST'): 115} # 25mg/ml - 2880/25
# Antibiotics for non-severe pneumonia - oral amoxicillin for 7 days for young infants only (40mg/kg BD -
# ((12*40)*2)*7 =6720mg)
self.consumables_used_in_hsi['Amoxicillin_tablet_or_suspension_7days'] = {
get_item_code(item='Amoxycillin 250mg_1000_CMST'): 6720,
get_item_code(item='Amoxycillin 125mg/5ml suspension, PFR_0.025_CMST'): 269} # 25mg/ml - 6720/25
# Antibiotic therapy for severe pneumonia - ampicillin package
# Amp. dose - 50mg/KG QDS 5 days = (50*12)*4)*5 = 12_000mg
# Gent. dose -7.5mg/kg per day 5 days = (7.5*12)*5 = 450mg
self.consumables_used_in_hsi['1st_line_IV_antibiotics'] = {
get_item_code(item='Ampicillin injection 500mg, PFR_each_CMST'): 24, # 500mg vial -12_000/500
get_item_code(item='Gentamicin Sulphate 40mg/ml, 2ml_each_CMST'): 6, # 80mg/2ml = 450/8
get_item_code(item='Cannula iv (winged with injection pot) 16_each_CMST'): 1,
get_item_code(item='Syringe, Autodisable SoloShot IX '): 1
}
# # Antibiotic therapy for severe pneumonia - benzylpenicillin package when ampicillin is not available
# Benpen dose - 50_000IU/KG QDS 5 days = (50_000*12)*4)*5 = 12_000_000IU = 8g (approx)
# Gent. dose -7.5mg/kg per day 5 days = (7.5*12)*5 = 450mg
self.consumables_used_in_hsi['Benzylpenicillin_gentamicin_therapy_for_severe_pneumonia'] = {
get_item_code(item='Benzylpenicillin 3g (5MU), PFR_each_CMST'): 8,
get_item_code(item='Gentamicin Sulphate 40mg/ml, 2ml_each_CMST'): 6, # 80mg/2ml = 450/8
get_item_code(item='Cannula iv (winged with injection pot) 16_each_CMST'): 1,
get_item_code(item='Syringe, Autodisable SoloShot IX '): 1
}
# Second line of antibiotics for severe pneumonia, if Staph not suspected
# Ceft. dose = 80mg/kg per day 5 days = (80*12)*5 = 4800mg
self.consumables_used_in_hsi['Ceftriaxone_therapy_for_severe_pneumonia'] = {
get_item_code(item='Ceftriaxone 1g, PFR_each_CMST'): 1, # smallest unit is 1g
get_item_code(item='Cannula iv (winged with injection pot) 16_each_CMST'): 1,
get_item_code(item='Syringe, Autodisable SoloShot IX '): 1
}
# Second line of antibiotics for severe pneumonia, if Staph is suspected
# Flucox. dose = 50mg/kg QDS 7 days = ((50*12)*4)*7 = 16_800mg
# Oral flucox dose. = same
self.consumables_used_in_hsi['2nd_line_Antibiotic_therapy_for_severe_staph_pneumonia'] = {
get_item_code(item='Flucloxacillin 250mg, vial, PFR_each_CMST'): 16_800,
get_item_code(item='Gentamicin Sulphate 40mg/ml, 2ml_each_CMST'): 6, # 80mg/2ml = 450/8
get_item_code(item='Cannula iv (winged with injection pot) 16_each_CMST'): 1,
get_item_code(item='Syringe, Autodisable SoloShot IX '): 1,
get_item_code(item='Flucloxacillin 250mg_100_CMST'): 16_800}
# First dose of antibiotic before referral -------------------
# single dose of 7.5mg gent and 50mg/g amp. given
# Referral process in iCCM for severe pneumonia, and at health centres for HIV exposed/infected
self.consumables_used_in_hsi['First_dose_oral_amoxicillin_for_referral'] = {
get_item_code(item='Amoxycillin 250mg_1000_CMST'): 250,
}
# Referral process at health centres for severe cases
self.consumables_used_in_hsi['First_dose_IM_antibiotics_for_referral'] = {
get_item_code(item='Ampicillin injection 500mg, PFR_each_CMST'): 2, # 2 x 500mg vial
get_item_code(item='Gentamicin Sulphate 40mg/ml, 2ml_each_CMST'): 2, # assuming single dose at referral
get_item_code(item='Cannula iv (winged with injection pot) 16_each_CMST'): 1,
get_item_code(item='Syringe, Autodisable SoloShot IX '): 1
}
# Oxygen, pulse oximetry and x-ray -------------------
# Oxygen for hypoxaemia - 5/l per min (Approx) for 3 days ((24*60)*5)*3
self.consumables_used_in_hsi['Oxygen_Therapy'] = {
get_item_code(item='Oxygen, 1000 liters, primarily with oxygen cylinders'): 21_600,
}
# Pulse oximetry
self.consumables_used_in_hsi['Pulse_oximetry'] = {
get_item_code(item='Oxygen, 1000 liters, primarily with oxygen cylinders'): 1
}
# X-ray scan
self.consumables_used_in_hsi['X_ray_scan'] = {
get_item_code(item='X-ray'): 1
}
# Optional consumables -------------------
# Paracetamol
self.consumables_used_in_hsi['Paracetamol_tablet'] = {
get_item_code(item='Paracetamol, tablet, 100 mg'): 240, # 20mg/kg
}
# Maintenance of fluids via nasograstric tube
self.consumables_used_in_hsi['Fluid_Maintenance'] = {
get_item_code(item='Tube, nasogastric CH 8_each_CMST'): 1
}
# Bronchodilator - inhaled
self.consumables_used_in_hsi['Inhaled_Brochodilator'] = {
get_item_code(item='Salbutamol sulphate 1mg/ml, 5ml_each_CMST'): 2
}
[docs]
def end_episode(self, person_id):
"""End the episode infection for a person (i.e. reset all properties to show no current infection or
complications).
This is called by AlriNaturalRecoveryEvent and AlriCureEvent.
NB. 'ri_end_of_current_episode is not reset: this is used to prevent new infections from occurring whilst HSI
from a previous episode may still be scheduled to occur.
"""
df = self.sim.population.props
# Reset properties to show no current infection:
new_properties = {
'ri_current_infection_status': False,
'ri_primary_pathogen': np.nan,
'ri_secondary_bacterial_pathogen': np.nan,
'ri_disease_type': np.nan,
'ri_SpO2_level': '>=93%',
'ri_on_treatment': False,
'ri_start_of_current_episode': pd.NaT,
'ri_scheduled_recovery_date': pd.NaT,
'ri_scheduled_death_date': pd.NaT,
}
df.loc[person_id, new_properties.keys()] = new_properties.values()
# Remove all existing complications
df.loc[person_id, [f"ri_complication_{c}" for c in self.complications]] = False
# Resolve all the symptoms immediately
self.sim.modules['SymptomManager'].clear_symptoms(person_id=person_id, disease_module=self)
[docs]
def cancel_death_and_schedule_cure(self, person_id):
"""Cancels a scheduled date of death due to Alri for a person, and schedules the CureEvent.
This is called within do_alri_treatment function.
Cancelling scheduled death date prior to the scheduling the CureEvent prevent deaths happening
in the time between a treatment being given and the cure event occurring.
:param person_id:
:return:
"""
df = self.sim.population.props
# cancel death date
self.sim.population.props.at[person_id, 'ri_scheduled_death_date'] = pd.NaT
# Determine cure date, and update recovery date
cure_date = self.sim.date + DateOffset(days=self.parameters['days_between_treatment_and_cure'])
df.at[person_id, 'ri_scheduled_recovery_date'] = cure_date
# Schedule the CureEvent
self.sim.schedule_event(AlriCureEvent(self, person_id), cure_date)
[docs]
def check_properties(self):
"""This is used in debugging to make sure that the configuration of properties is correct"""
df = self.sim.population.props
# identify those who currently have an infection with a pathogen that can cause ALRI:
curr_inf = df['is_alive'] & df['ri_current_infection_status']
not_curr_inf = df['is_alive'] & ~df['ri_current_infection_status']
# For those with no current infection, variables about the current infection should be null
assert df.loc[not_curr_inf, [
'ri_primary_pathogen',
'ri_secondary_bacterial_pathogen',
'ri_disease_type',
'ri_start_of_current_episode',
'ri_scheduled_recovery_date',
'ri_scheduled_death_date']
].isna().all().all()
# For those with no current infection, 'ri_end_of_current_episode' should be null or in the past or within the
# period for which the episode can last.
assert (
df.loc[not_curr_inf, 'ri_end_of_current_episode'].isna() |
(df.loc[not_curr_inf, 'ri_end_of_current_episode'] <= self.sim.date) |
(
(df.loc[not_curr_inf, 'ri_end_of_current_episode'] - self.sim.date).dt.days
<= self.max_duration_of_episode.days
)
).all()
# For those with no current infection, there should be no treatment
assert not df.loc[not_curr_inf, 'ri_on_treatment'].any()
# For those with no current infection, there should be no complications
assert not df.loc[
not_curr_inf, [f"ri_complication_{c}" for c in self.complications]
].any().any()
# For those with current infection, variables about the current infection should not be null
assert not df.loc[curr_inf, [
'ri_primary_pathogen',
'ri_disease_type']
].isna().any().any()
# For those with current infection, dates relating to this episode should make sense
# - start is in the past and end is in the future
assert (df.loc[curr_inf, 'ri_start_of_current_episode'] <= self.sim.date).all()
assert (df.loc[curr_inf, 'ri_end_of_current_episode'] >= self.sim.date).all()
# - a person has exactly one of a recovery_date _or_ a death_date
assert ((~df.loc[curr_inf, 'ri_scheduled_recovery_date'].isna()) | (
~df.loc[curr_inf, 'ri_scheduled_death_date'].isna())).all()
assert (df.loc[curr_inf, 'ri_scheduled_recovery_date'].isna() != df.loc[
curr_inf, 'ri_scheduled_death_date'].isna()).all()
# If that primary pathogen is bacterial then there should be np.nan for secondary_bacterial_pathogen:
assert df.loc[
curr_inf & df['ri_primary_pathogen'].isin(self.pathogens['bacterial']), 'ri_secondary_bacterial_pathogen'
].isna().all()
# There should be consistency between the properties for oxygen saturation and the presence of the complication
# hypoxaemia
assert (df.loc[df.is_alive & df['ri_complication_hypoxaemia'], 'ri_SpO2_level'] != '>=93%').all()
assert (df.loc[df.is_alive & ~df['ri_complication_hypoxaemia'], 'ri_SpO2_level'] == '>=93%').all()
[docs]
def do_effects_of_treatment_and_return_outcome(self, person_id, antibiotic_provided: str, oxygen_provided: bool):
"""Helper function that enacts the effects of a treatment to Alri caused by a pathogen.
It will only do something if the Alri is caused by a pathogen (this module).
* Prevent any death event that may be scheduled from occurring
* Returns 'success' if the treatment is successful and 'failure' is it is not successful."""
df = self.sim.population.props
person = df.loc[person_id]
if not person.ri_current_infection_status:
return
# Record that the person is now on treatment:
self.sim.population.props.at[person_id, 'ri_on_treatment'] = True
self.logging_event.new_treated()
# Gather underlying properties that will affect success of treatment
SpO2_level = person.ri_SpO2_level
symptoms = self.sim.modules['SymptomManager'].has_what(person_id=person_id)
imci_symptom_based_classification = self.get_imci_classification_based_on_symptoms(
child_is_younger_than_2_months=person.age_exact_years < (2.0 / 12.0),
symptoms=symptoms,
)
disease_type = person.ri_disease_type
hiv_infected_and_not_on_art = person.hv_inf and (person.hv_art != "on_VL_suppressed")
un_clinical_acute_malnutrition = person.un_clinical_acute_malnutrition
complications = [_c for _c in self.complications if person[f"ri_complication_{_c}"]]
# Will the treatment fail:
treatment_fails = self.models.treatment_fails(
imci_symptom_based_classification=imci_symptom_based_classification,
SpO2_level=SpO2_level,
disease_type=disease_type,
any_complications=len(complications) > 0,
symptoms=symptoms,
hiv_infected_and_not_on_art=hiv_infected_and_not_on_art,
un_clinical_acute_malnutrition=un_clinical_acute_malnutrition,
antibiotic_provided=antibiotic_provided,
oxygen_provided=oxygen_provided,
)
# Cancel death (if there is one) if the treatment does not fail (i.e. it works) and return indication of
# sucesss of failure.
if not treatment_fails:
self.cancel_death_and_schedule_cure(person_id)
return 'success'
else:
return 'failure'
[docs]
def record_sought_care_for_alri(self):
"""Count that the person is seeking care"""
self.logging_event.new_seeking_care()
[docs]
@staticmethod
def get_imci_classification_based_on_symptoms(child_is_younger_than_2_months: bool, symptoms: list) -> str:
"""Based on age and symptoms, classify WHO-pneumonia severity. This is regarded as the *TRUE* classification
based on symptoms. It will return one of: {
'fast_breathing_pneumonia',
'danger_signs_pneumonia',
'chest_indrawing_pneumonia,
'cough_or_cold'
}."""
if child_is_younger_than_2_months:
if ('chest_indrawing' in symptoms) or ('danger_signs' in symptoms):
return 'danger_signs_pneumonia'
elif 'tachypnoea' in symptoms:
return 'fast_breathing_pneumonia'
else:
return 'cough_or_cold'
else:
if 'danger_signs' in symptoms:
return 'danger_signs_pneumonia'
elif 'chest_indrawing' in symptoms:
return 'chest_indrawing_pneumonia'
elif 'tachypnoea' in symptoms:
return 'fast_breathing_pneumonia'
else:
return 'cough_or_cold'
[docs]
@staticmethod
def _ultimate_treatment_indicated_for_patient(classification_for_treatment_decision, age_exact_years) -> Dict:
"""Return a Dict of the form {'antibiotic_indicated': Tuple[str], 'oxygen_indicated': <>} which expresses what
the treatment is that the patient _should_ be provided with ultimately (i.e., if consumables are available and
following an admission to in-patient, if required).
For the antibiotic indicated, the first in the list is the one for which effectiveness parameters are defined;
the second is assumed to be a drop-in replacement with the same effectiveness etc., and is used only when the
first is found to be not available."""
if classification_for_treatment_decision == 'fast_breathing_pneumonia':
return {
'antibiotic_indicated': (
'Amoxicillin_tablet_or_suspension_7days' if age_exact_years < 2.0 / 12.0
else 'Amoxicillin_tablet_or_suspension_3days', # <-- # <-- First choice antibiotic
),
'oxygen_indicated': False
}
elif classification_for_treatment_decision == 'chest_indrawing_pneumonia':
return {
'antibiotic_indicated': (
'Amoxicillin_tablet_or_suspension_5days', # <-- # <-- First choice antibiotic
),
'oxygen_indicated': False
}
elif classification_for_treatment_decision == 'danger_signs_pneumonia':
return {
'antibiotic_indicated': (
'1st_line_IV_antibiotics', # <-- # <-- First choice antibiotic
'Benzylpenicillin_gentamicin_therapy_for_severe_pneumonia' # <-- If the first choice not available
),
'oxygen_indicated': True
}
elif classification_for_treatment_decision == "cough_or_cold":
return {
'antibiotic_indicated': (
'', # <-- First choice antibiotic
),
'oxygen_indicated': False
}
else:
raise ValueError(f'Classification not recognised: {classification_for_treatment_decision}')
[docs]
def do_at_generic_first_appt(
self,
person_id: int,
individual_properties: IndividualProperties,
symptoms: List[str],
schedule_hsi_event: HSIEventScheduler,
facility_level: str,
**kwargs,
) -> None:
# Action taken when a child (under 5 years old) presents at a
# generic appointment (emergency or non-emergency) with symptoms
# of `cough` or `difficult_breathing`.
if individual_properties["age_years"] <= 5 and (
("cough" in symptoms) or ("difficult_breathing" in symptoms)
):
self.record_sought_care_for_alri()
# All persons have an initial out-patient appointment at the current facility level.
event = HSI_Alri_Treatment(
person_id=person_id, module=self, facility_level=facility_level
)
schedule_hsi_event(
event,
topen=self.sim.date,
tclose=self.sim.date + pd.DateOffset(days=1),
priority=1,
)
[docs]
def do_at_generic_first_appt_emergency(self, **kwargs) -> None:
# Emergency and non-emergency treatment is identical for alri
self.do_at_generic_first_appt(**kwargs)
class Models:
"""Helper-class to store all the models that specify the natural history of the Alri disease"""
def __init__(self, module):
self.module = module
self.p = module.parameters
self.rng = module.rng
# dict that will hold the linear models for incidence risk for each pathogen
self.incidence_equations_by_pathogen = dict()
# set-up the linear models for the incidence risk for each pathogen
self.make_model_for_acquisition_risk()
def make_model_for_acquisition_risk(self):
""""Model for the acquisition of a primary pathogen that can cause ALri"""
p = self.p
df = self.module.sim.population.props
def make_scaled_linear_model_for_incidence(target_prob_by_age):
"""Return a linear model that is scaled for each the age-groups.
It does this by first making an unscaled linear model with an intercept of 1.0. Using this, it calculates
the resulting mean incidence rate for the population (by age-group). It then creates a new linear model
with an adjusted age effect so that the average incidence in the population (by age-group) matches the
target.
NB. It will not work if there are no persons of that age in the population.
"""
def make_linear_model(age_effects=None):
"""Make the linear model based for a particular pathogen and a particular age-group."""
if age_effects is None:
age_effects = {
0: 1.0,
1: 1.0,
2: 1.0,
3: 1.0,
4: 1.0,
}
return LinearModel(
LinearModelType.MULTIPLICATIVE,
1.0,
Predictor(
'age_years',
conditions_are_mutually_exclusive=True,
conditions_are_exhaustive=True).when(0, age_effects[0])
.when(1, age_effects[1])
.when(2, age_effects[2])
.when(3, age_effects[3])
.when(4, age_effects[4])
.when('>= 5', 0.0),
Predictor('li_wood_burn_stove').when(False, p['rr_ALRI_indoor_air_pollution']),
Predictor().when('(va_measles_all_doses == False) & (age_years >= 1)',
p['rr_ALRI_incomplete_measles_immunisation']),
Predictor().when('(hv_inf == True) & (hv_art!= "on_VL_suppressed")', p['rr_ALRI_HIV/AIDS']),
Predictor().when('(nb_breastfeeding_status != "exclusive") & (age_exact_years < 1/6)',
p['rr_ALRI_non_exclusive_breastfeeding'])
)
# Unpack `target_prob_by_age` to a dict with keys that match `age_years_exact` = 0, 1, 2, 3, 4
_target = {
0: target_prob_by_age[0],
1: target_prob_by_age[1],
2: target_prob_by_age[2],
3: target_prob_by_age[2],
4: target_prob_by_age[2],
}
# make unscaled linear model
unscaled_lm = make_linear_model()
# Compute scaling factors for each age-group:
_age_effect = (pd.Series(_target) /
unscaled_lm.predict(df.loc[df.is_alive & (df.age_years < 5)]).groupby(by=df.age_years).mean()
).fillna(1.0).to_dict()
# Return the linear model with the appropriate scaling factor
return make_linear_model(age_effects=_age_effect)
for patho in self.module.all_pathogens:
self.incidence_equations_by_pathogen[patho] = \
make_scaled_linear_model_for_incidence(target_prob_by_age=self.p[f'base_inc_rate_ALRI_by_{patho}'])
def compute_risk_of_acquisition(self, pathogen, df):
"""Compute the risk of a pathogen, using the linear model created and the df provided"""
p = self.p
# Run linear model to get baseline risk
baseline = self.incidence_equations_by_pathogen[pathogen].predict(df)
# apply the reduced risk of acquisition for those vaccinated
if pathogen == "Strep_pneumoniae_PCV13":
baseline.loc[df['va_pneumo_all_doses'] & (df['age_years'] < 2)] \
*= p['rr_Strep_pneum_VT_ALRI_with_PCV13_age<2y']
baseline.loc[df['va_pneumo_all_doses'] & (df['age_years'].between(2, 5))] \
*= p['rr_Strep_pneum_VT_ALRI_with_PCV13_age2to5y']
elif pathogen == "Hib":
baseline.loc[df['va_hib_all_doses']] *= p['rr_Hib_ALRI_with_Hib_vaccine']
return baseline
def determine_disease_type_and_secondary_bacterial_coinfection(self,
pathogen,
age_exact_years,
va_hib_all_doses,
va_pneumo_all_doses):
"""Determines:
* the disease that is caused by infection with this pathogen (from among self.disease_types)
* if there is a bacterial coinfection associated that will cause the dominant disease.
Note that the disease_type is 'bacterial_pneumonia' if primary pathogen is viral and there is a secondary
bacterial coinfection.
"""
p = self.p
# Determine the disease type - pneumonia or other_alri
col = 0 if age_exact_years < 1.0 else 1
prob_is_pneumonia = p[f'proportion_pneumonia_in_{pathogen}_ALRI'][col]
if prob_is_pneumonia > self.rng.random_sample():
disease_type = 'pneumonia'
else:
disease_type = 'other_alri'
# Determine bacterial-coinfection
if pathogen in self.module.pathogens['viral']:
if disease_type == 'pneumonia':
if p['prob_viral_pneumonia_bacterial_coinfection'] > self.rng.random_sample():
bacterial_coinfection = self.secondary_bacterial_infection(va_hib_all_doses=va_hib_all_doses,
va_pneumo_all_doses=va_pneumo_all_doses)
else:
bacterial_coinfection = np.nan
else:
# brochiolitis/other_alri (viral)
bacterial_coinfection = np.nan
else:
# No bacterial co-infection in primary bacterial or fungal cause
bacterial_coinfection = np.nan
assert disease_type in self.module.disease_types
assert bacterial_coinfection in (self.module.pathogens['bacterial'] + [np.nan])
return disease_type, bacterial_coinfection
def secondary_bacterial_infection(self, va_hib_all_doses, va_pneumo_all_doses):
"""Determine which specific bacterial pathogen causes a secondary coinfection, or if there is no secondary
bacterial infection (due to the effects of the pneumococcal vaccine).
"""
p = self.p
# get probability of bacterial coinfection with each pathogen
probs = dict(zip(
self.module.pathogens['bacterial'], p['proportion_bacterial_coinfection_pathogen']))
# Edit the probability that the coinfection will be of `Strep_pneumoniae_PCV13` if the person has had
# the pneumococcal vaccine:
if va_pneumo_all_doses:
probs['Strep_pneumoniae_PCV13'] *= p['rr_Strep_pneum_VT_ALRI_with_PCV13_age2to5y']
# Edit the probability that the coinfection will be of `Hib` if the person has had
# the hib vaccine:
if va_hib_all_doses:
probs['Hib'] *= p['rr_Hib_ALRI_with_Hib_vaccine']
# Add in the probability that there is none (to ensure that all probabilities sum to 1.0)
probs['_none_'] = 1.0 - sum(probs.values())
# return the random selection of bacterial coinfection (including possibly np.nan for 'none')
outcome = self.rng.choice(list(probs.keys()), p=list(probs.values()))
return outcome if outcome != '_none_' else np.nan
def get_complications_that_onset(self, disease_type, primary_path_is_bacterial, has_secondary_bacterial_inf):
"""Determine the set of complication for this person"""
p = self.p
probs = defaultdict(float)
# probabilities for local pulmonary complications
prob_pulmonary_complications = p['prob_pulmonary_complications_in_pneumonia']
if disease_type == 'pneumonia':
if prob_pulmonary_complications > self.rng.random_sample():
for c in ['pneumothorax', 'pleural_effusion', 'lung_abscess', 'empyema']:
probs[c] += p[f'prob_{c}_in_pulmonary_complicated_pneumonia']
# probabilities for systemic complications
if primary_path_is_bacterial or has_secondary_bacterial_inf:
probs['sepsis'] += p['prob_bacteraemia_in_pneumonia'] * p['prob_progression_to_sepsis_with_bacteraemia']
probs['hypoxaemia'] += p['prob_hypoxaemia_in_pneumonia']
elif disease_type == 'other_alri':
probs['hypoxaemia'] += p['prob_hypoxaemia_in_other_alri']
# determine which complications are onset:
complications = {c for c, p in probs.items() if p > self.rng.random_sample()}
return sorted(complications)
def get_oxygen_saturation(self, complication_set):
"""Set peripheral oxygen saturation"""
if 'hypoxaemia' in complication_set:
if self.p['proportion_hypoxaemia_with_SpO2<90%'] > self.rng.random_sample():
return '<90%'
else:
return '90-92%'
else:
return '>=93%'
def symptoms_for_disease(self, disease_type) -> set:
"""Determine set of symptom (before complications) for a given instance of disease"""
p = self.p
assert disease_type in self.module.disease_types
probs = {
symptom: p[f'prob_{symptom}_in_{disease_type}']
for symptom in [
'cough', 'difficult_breathing', 'cyanosis', 'fever', 'tachypnoea',
'chest_indrawing', 'danger_signs']
}
# determine which symptoms are onset:
symptoms = {s for s, p in probs.items() if p > self.rng.random_sample()}
return symptoms
def symptoms_for_complication(self, complication, oxygen_saturation):
"""Probability of each symptom for a person given a complication"""
p = self.p
probs = defaultdict(float)
if complication == 'hypoxaemia':
if oxygen_saturation == '<90%':
probs = {
'danger_signs': p['prob_danger_signs_in_SpO2<90%'],
'chest_indrawing': p['prob_chest_indrawing_in_SpO2<90%'],
'cyanosis': p['prob_cyanosis_in_SpO2<90%']
}
elif oxygen_saturation == '90-92%':
probs = {
'danger_signs': p['prob_danger_signs_in_SpO2_90-92%'],
'chest_indrawing': p['prob_chest_indrawing_in_SpO2_90-92%']
}
elif complication == 'sepsis':
probs = {
'danger_signs': p['prob_danger_signs_in_sepsis']
}
# determine which symptoms are onset:
symptoms = {s for s, p in probs.items() if p > self.rng.random_sample()}
return symptoms
def will_die_of_alri(self, **kwargs) -> bool:
"""Determine if person will die from Alri"""
return self.prob_die_of_alri(**kwargs) > self.rng.random_sample()
def prob_die_of_alri(self,
age_exact_years: float,
sex: str,
pathogen: str,
disease_type: str,
SpO2_level: str,
complications: List[str],
danger_signs: bool,
un_clinical_acute_malnutrition: str,
) -> float:
"""Returns the probability that such a case of ALRI will be lethal (if untreated)."""
p = self.p
# Death does not occur if there are no complications
if 0 == len(complications):
return 0.0
def get_odds_of_death(age_in_whole_months):
"""Returns odds of death given age in whole months."""
def get_odds_of_death_for_under_two_month_old(age_in_whole_months):
return p[f'base_odds_death_ALRI_{_age_}'] * \
(p[f'or_death_ALRI_{_age_}_by_month_increase_in_age'] ** age_in_whole_months)
def get_odds_of_death_for_over_two_month_old(age_in_whole_months):
return p[f'base_odds_death_ALRI_{_age_}'] * \
(p[f'or_death_ALRI_{_age_}_by_month_increase_in_age'] ** (age_in_whole_months - 2))
return get_odds_of_death_for_under_two_month_old(age_in_whole_months=age_in_whole_months) \
if age_in_whole_months < 2 \
else get_odds_of_death_for_over_two_month_old(age_in_whole_months=age_in_whole_months)
age_in_whole_months = int(np.floor(age_exact_years * 12.0))
is_under_two_months_old = age_in_whole_months < 2
_age_ = "age<2mo" if is_under_two_months_old else "age2_59mo"
# Get baseline odds of death given age
odds_death = get_odds_of_death(age_in_whole_months=age_in_whole_months)
# Modify odds of death based on other factors:
if danger_signs:
odds_death *= p[f'or_death_ALRI_{_age_}_very_severe_pneumonia']
if pathogen == 'P.jirovecii':
odds_death *= p[f'or_death_ALRI_{_age_}_P.jirovecii']
if not is_under_two_months_old:
if sex == 'F':
odds_death *= p[f'or_death_ALRI_{_age_}_female']
if un_clinical_acute_malnutrition == 'SAM':
odds_death *= p[f'or_death_ALRI_{_age_}_SAM']
if SpO2_level == '<90%':
odds_death *= p['or_death_ALRI_SpO2<90%']
elif SpO2_level == '90-92%':
odds_death *= p['or_death_ALRI_SpO2_90_92%']
if 'sepsis' in complications:
odds_death *= p['or_death_ALRI_sepsis']
if 'pneumothorax' in complications:
odds_death *= p['or_death_ALRI_pneumothorax']
return min(1.0, p['scaler_on_risk_of_death'] * to_prob(odds_death)) # Return the probability of death,
# with scaling.
def treatment_fails(self, **kwargs) -> bool:
"""Determine whether a treatment fails or not: Returns `True` if the treatment fails."""
p_fail = self._prob_treatment_fails(**kwargs)
assert p_fail is not None, f"no probability of failure is recorded, {kwargs=}"
return p_fail > self.rng.random_sample()
def _prob_treatment_fails(self,
imci_symptom_based_classification: str,
SpO2_level: str,
disease_type: str,
any_complications: bool,
symptoms: List[str],
hiv_infected_and_not_on_art: bool,
un_clinical_acute_malnutrition: str,
antibiotic_provided: str,
oxygen_provided: bool
) -> float:
"""Returns the probability of treatment failure. Treatment failures are dependent on the underlying IMCI
classification by symptom, the need for oxygen (if SpO2 < 90%), and the type of antibiotic therapy (oral vs.
IV/IM). NB. antibiotic_provided = '' means no antibiotic provided."""
assert antibiotic_provided in self.module.antibiotics + [''], f"Not recognised {antibiotic_provided=}"
p = self.p
needs_oxygen = SpO2_level == "<90%"
def modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(_risk):
"""Define the effect size for the increase in the risk of treatment failure if a person need oxygen but does
not receive it. The parameter is an odds ratio, so to use it with the risk, there has to be conversion
between odds and probabilities."""
or_if_does_not_get_oxygen_but_needs_oxygen = 1.0 / p['or_mortality_improved_oxygen_systems']
return to_prob(to_odds(_risk) * or_if_does_not_get_oxygen_but_needs_oxygen)
def _prob_treatment_fails_when_danger_signs_pneumonia():
"""Return probability treatment fails when the true classification is danger_signs_pneumonia."""
if antibiotic_provided == '':
return 1.0 # If no antibiotic is provided the treatment fails
elif antibiotic_provided == '1st_line_IV_antibiotics':
# danger_signs_pneumonia given 1st line IV antibiotic:
# Baseline risk of treatment failure (... if oxygen is also provided)
risk_tf_1st_line_antibiotics = p['tf_1st_line_antibiotic_for_severe_pneumonia']
# The effect of central cyanosis
if 'cyanosis' in symptoms:
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_cyanosis']
if needs_oxygen:
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_SpO2<90%']
if disease_type == 'pneumonia':
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_abnormal_CXR']
# The effect of HIV
if hiv_infected_and_not_on_art:
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_HIV/AIDS']
# The effect of acute malnutrition
if un_clinical_acute_malnutrition == 'MAM':
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_MAM']
elif un_clinical_acute_malnutrition == 'SAM':
risk_tf_1st_line_antibiotics *= p['rr_tf_1st_line_antibiotics_if_SAM']
if needs_oxygen and not oxygen_provided:
# Elevate risk, according to odds ratio "or_if_no_oxygen"
risk_tf_1st_line_antibiotics = \
modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(risk_tf_1st_line_antibiotics)
return min(1.0, risk_tf_1st_line_antibiotics)
elif antibiotic_provided in self.module.antibiotics:
# danger_signs_pneumonia given oral antibiotics (probably due to misdiagnosis)
if needs_oxygen:
if oxygen_provided:
return p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2<90%']
else:
return modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(
p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2<90%'])
else:
return p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2>=90%']
else:
raise ValueError('Unrecognised antibiotic.')
def _prob_treatment_fails_when_fast_breathing_pneumonia():
"""Return probability treatment fails when the true classification is fast_breathing_pneumonia."""
if antibiotic_provided == '':
return 1.0 # If no antibiotic is provided the treatment fails
if not needs_oxygen:
if antibiotic_provided == 'Amoxicillin_tablet_or_suspension_3days':
return p['tf_3day_amoxicillin_for_fast_breathing_with_SpO2>=90%']
elif antibiotic_provided == 'Amoxicillin_tablet_or_suspension_7days':
return p['tf_7day_amoxicillin_for_fast_breathing_pneumonia_in_young_infants']
elif antibiotic_provided in self.module.antibiotics:
return min(p['tf_3day_amoxicillin_for_fast_breathing_with_SpO2>=90%'],
p['tf_7day_amoxicillin_for_fast_breathing_pneumonia_in_young_infants'])
else:
raise ValueError('Unrecognised antibiotic.')
else:
if oxygen_provided:
return p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%']
else:
return modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(
p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%'])
def _prob_treatment_fails_when_chest_indrawing_pneumonia():
"""Return probability treatment fails when the true classification is chest_indrawing_pneumonia."""
if antibiotic_provided == '':
return 1.0 # If no antibiotic is provided the treatment fails
if not needs_oxygen:
if antibiotic_provided == 'Amoxicillin_tablet_or_suspension_5days':
return p['tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%']
elif antibiotic_provided == 'Amoxicillin_tablet_or_suspension_3days':
return p['tf_3day_amoxicillin_for_chest_indrawing_with_SpO2>=90%']
elif antibiotic_provided in self.module.antibiotics:
return min(p['tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'],
p['tf_3day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'])
else:
raise ValueError('Unrecognised antibiotic.')
else:
if oxygen_provided:
return p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%']
else:
return modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(
p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%'])
def _prob_treatment_fails_when_cough_or_cold():
"""Return probability treatment fails when the true classification is "cough_or_cold."""
if not needs_oxygen:
if not any_complications:
return 0.0 # Treatment cannot 'fail' for a cough_or_cold without complications and no need of
# oxygen
else:
return p['tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%']
else:
# Non-severe classifications given oral antibiotics that do need oxygen -----
if oxygen_provided:
return p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%']
else:
return modify_failure_risk_when_does_not_get_oxygen_but_needs_oxygen(
p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%'])
if imci_symptom_based_classification == 'danger_signs_pneumonia':
return min(1.0, _prob_treatment_fails_when_danger_signs_pneumonia())
elif imci_symptom_based_classification == 'fast_breathing_pneumonia':
return min(1.0, _prob_treatment_fails_when_fast_breathing_pneumonia())
elif imci_symptom_based_classification == 'chest_indrawing_pneumonia':
return min(1.0, _prob_treatment_fails_when_chest_indrawing_pneumonia())
elif imci_symptom_based_classification == 'cough_or_cold':
return min(1.0, _prob_treatment_fails_when_cough_or_cold())
else:
raise ValueError('Unrecognised imci_symptom_based_classification.')
# ---------------------------------------------------------------------------------------------------------
# DISEASE MODULE EVENTS
# ---------------------------------------------------------------------------------------------------------
[docs]
class AlriPollingEvent(RegularEvent, PopulationScopeEventMixin):
"""This is the main event that runs the acquisition of pathogens that cause Alri.
It determines who is infected and when and schedules individual IncidentCase events to represent onset.
A known issue is that Alri events are scheduled based on the risk of current age but occur a short time
later when the children will be slightly older. This means that when comparing the model output with data, the
model slightly under-represents incidence among younger age-groups and over-represents incidence among older
age-groups. This is a small effect when the frequency of the polling event is high."""
[docs]
def __init__(self, module):
super().__init__(module, frequency=DateOffset(months=2))
@property
def fraction_of_year_between_polling_event(self):
"""Return the fraction of a year that elapses between polling event. This is used to adjust the risk of
infection"""
return (self.sim.date + self.frequency - self.sim.date) / pd.Timedelta(days=DAYS_IN_YEAR)
[docs]
def get_probs_of_acquiring_pathogen(self, interval_as_fraction_of_a_year: float):
"""Return the probability of each person in the dataframe acquiring each pathogen, during the time interval
specified (as fraction of a year)."""
df = self.sim.population.props
m = self.module
models = m.models
# Compute the incidence rate for each person getting Alri and then convert into a probability
# getting all children that do not currently have an Alri episode (never had or last episode resolved)
mask_could_get_new_alri_event = (
df.is_alive & (df.age_years < 5) & ~df.ri_current_infection_status &
((df.ri_end_of_current_episode < self.sim.date) | pd.isnull(df.ri_end_of_current_episode))
)
# Compute the incidence rate for each person acquiring Alri
inc_of_acquiring_alri = pd.DataFrame(index=df.loc[mask_could_get_new_alri_event].index)
for pathogen in m.all_pathogens:
inc_of_acquiring_alri[pathogen] = models.compute_risk_of_acquisition(
pathogen=pathogen,
df=df.loc[mask_could_get_new_alri_event]
)
return 1 - np.exp(
-inc_of_acquiring_alri * interval_as_fraction_of_a_year
)
[docs]
def get_persons_for_new_alri(self) -> Dict:
"""Returns Dict of the form {<person_id>: <pathogen>} representing the persons who will become infected and with
what pathogen."""
# Get probabilities for each person of being infected with each pathogen
probs_of_acquiring_pathogen = self.get_probs_of_acquiring_pathogen(
interval_as_fraction_of_a_year=self.fraction_of_year_between_polling_event)
# Sample to find outcomes (who is infected and with what pathogen):
return sample_outcome(probs=probs_of_acquiring_pathogen, rng=self.module.rng)
[docs]
def apply(self, population):
"""Determine who will become infected and schedule for them an AlriComplicationOnsetEvent"""
new_alri = self.get_persons_for_new_alri()
# For each person that will have ALRI, schedule an AlriIncidentCase event
for person_id, pathogen in new_alri.items():
# Create the event for the onset of infection:
self.sim.schedule_event(
event=AlriIncidentCase(
module=self.module,
person_id=person_id,
pathogen=pathogen,
),
date=random_date(self.sim.date, self.sim.date + self.frequency - pd.DateOffset(days=1), self.module.rng)
)
[docs]
class AlriIncidentCase(Event, IndividualScopeEventMixin):
"""This Event is for the onset of the infection that causes Alri. It is scheduled by the AlriPollingEvent."""
[docs]
def __init__(self, module, person_id, pathogen):
super().__init__(module, person_id=person_id)
self.pathogen = pathogen
[docs]
def determine_nature_of_the_case(self,
age_exact_years,
sex,
pathogen,
va_hib_all_doses,
va_pneumo_all_doses,
un_clinical_acute_malnutrition,
) -> Dict:
"""Determine all the characteristics of this case:
* disease_type,
* bacterial_coinfection,
* duration_in_days_of_alri,
* date_of_outcome,
* episode_end,
* symptoms,
* complications,
* oxygen_saturation,
* will_die,
"""
models = self.module.models
rng = self.module.rng
params = self.module.parameters
date = self.module.sim.date
# ----------------- Determine the Alri disease type and bacterial coinfection for this case -----------------
disease_type, bacterial_coinfection = \
models.determine_disease_type_and_secondary_bacterial_coinfection(
age_exact_years=age_exact_years,
pathogen=pathogen,
va_hib_all_doses=va_hib_all_doses,
va_pneumo_all_doses=va_pneumo_all_doses,
)
# ----------------------- Duration of the Alri event and episode -----------------------
duration_in_days_of_alri = rng.randint(1, params['max_alri_duration_in_days_without_treatment'])
# Date for outcome (either recovery or death) with uncomplicated Alri
date_of_outcome = date + DateOffset(days=duration_in_days_of_alri)
# Define 'episode end' date. This the date when this episode ends. It is the last possible data that any HSI
# could affect this episode.
episode_end = date_of_outcome + DateOffset(days=params['days_between_treatment_and_cure'])
# ----------------------------------- Clinical Symptoms -----------------------------------
symptoms_for_uncomplicated_disease = models.symptoms_for_disease(disease_type=disease_type)
# ----------------------------------- Complications -----------------------------------
complications = models.get_complications_that_onset(
disease_type=disease_type,
primary_path_is_bacterial=(pathogen in self.module.pathogens['bacterial']),
has_secondary_bacterial_inf=pd.notnull(bacterial_coinfection)
)
oxygen_saturation = models.get_oxygen_saturation(complication_set=complications)
def get_symptoms_for_complications(complications: set, oxygen_saturation: str) -> set:
"""Return the set of symptoms consistent with the set of complications that are onset."""
symptoms_for_complications = set()
for complication in complications:
symptoms_for_complications.update(
models.symptoms_for_complication(
complication=complication,
oxygen_saturation=oxygen_saturation
)
)
return symptoms_for_complications
symptoms_for_complications = get_symptoms_for_complications(complications=complications,
oxygen_saturation=oxygen_saturation)
all_symptoms = sorted(symptoms_for_uncomplicated_disease.union(symptoms_for_complications))
# ----------------------------------- Whether Will Die -----------------------------------
will_die = models.will_die_of_alri(
age_exact_years=age_exact_years,
sex=sex,
pathogen=pathogen,
disease_type=disease_type,
SpO2_level=oxygen_saturation,
complications=complications,
danger_signs=('danger_signs' in all_symptoms),
un_clinical_acute_malnutrition=un_clinical_acute_malnutrition,
)
return {
'disease_type': disease_type,
'bacterial_coinfection': bacterial_coinfection,
'duration_in_days_of_alri': duration_in_days_of_alri,
'date_of_outcome': date_of_outcome,
'episode_end': episode_end,
'symptoms': all_symptoms,
'complications': complications,
'oxygen_saturation': oxygen_saturation,
'will_die': will_die,
}
[docs]
def apply_characteristics_of_the_case(self, person_id, chars):
"""Update properties of the individual, impose symptoms and schedule events to reflect the characteristics of
the case."""
df = self.sim.population.props
# Update the properties in the dataframe:
_chars = {
'ri_current_infection_status': True,
'ri_primary_pathogen': self.pathogen,
'ri_secondary_bacterial_pathogen': chars['bacterial_coinfection'],
'ri_disease_type': chars['disease_type'],
'ri_SpO2_level': chars['oxygen_saturation'],
'ri_on_treatment': False,
'ri_start_of_current_episode': self.sim.date,
'ri_scheduled_recovery_date': pd.NaT,
'ri_scheduled_death_date': pd.NaT,
'ri_end_of_current_episode': chars['episode_end'],
}
df.loc[person_id, _chars.keys()] = _chars.values()
df.loc[person_id, [f"ri_complication_{_complication}" for _complication in chars['complications']]] = True
# Impose symptoms
self.module.sim.modules['SymptomManager'].change_symptom(
person_id=person_id,
symptom_string=chars['symptoms'],
add_or_remove='+',
disease_module=self.module,
)
# Schedule death or recovery event
if chars['will_die']:
self.sim.schedule_event(AlriDeathEvent(self.module, person_id), chars['date_of_outcome'])
df.loc[person_id, ['ri_scheduled_death_date', 'ri_scheduled_recovery_date']] = \
[chars['date_of_outcome'], pd.NaT]
else:
self.sim.schedule_event(AlriNaturalRecoveryEvent(self.module, person_id), chars['date_of_outcome'])
df.loc[person_id, ['ri_scheduled_recovery_date', 'ri_scheduled_death_date']] = \
[chars['date_of_outcome'], pd.NaT]
# Log the incident case:
self.module.logging_event.new_case(age=df.at[person_id, "age_years"], pathogen=self.pathogen)
# Log the complications to the tracker
if set(chars['complications']).intersection(['pneumothorax', 'pleural_effusion', 'empyema', 'lung_abscess']):
self.module.logging_event.new_pulmonary_complication_case()
if 'sepsis' in chars['complications']:
self.module.logging_event.new_systemic_complication_case()
if 'hypoxaemia' in chars['complications']:
self.module.logging_event.new_hypoxaemic_case()
[docs]
def apply(self, person_id):
"""Determines and enacts all the characteristics of the case (symotoms, complications, outcome)"""
df = self.sim.population.props
person = df.loc[person_id]
# The event should not run if the person is not currently alive:
if not person.is_alive:
return
# Get the characteristics of the case
chars = self.determine_nature_of_the_case(
pathogen=self.pathogen,
sex=person.sex,
age_exact_years=person.age_exact_years,
va_hib_all_doses=person.va_hib_all_doses,
va_pneumo_all_doses=person.va_pneumo_all_doses,
un_clinical_acute_malnutrition=person.un_clinical_acute_malnutrition,
)
# Apply the characteristics to this case:
self.apply_characteristics_of_the_case(person_id=person_id, chars=chars)
[docs]
class AlriNaturalRecoveryEvent(Event, IndividualScopeEventMixin):
"""This is the Natural Recovery event. It is scheduled by the AlriIncidentCase Event for someone who will recover
from the infection even if no care received. It calls the 'end_infection' function."""
[docs]
def __init__(self, module, person_id):
super().__init__(module, person_id=person_id)
[docs]
def apply(self, person_id):
df = self.sim.population.props
person = df.loc[person_id]
# The event should not run if the person is not currently alive
if not person.is_alive:
return
# Check if person should really recover:
if (
person.ri_current_infection_status and
(person.ri_scheduled_recovery_date == self.sim.date) and
pd.isnull(person.ri_scheduled_death_date)
):
# Log the recovery
self.module.logging_event.new_recovered_case(
age=person.age_years,
pathogen=person.ri_primary_pathogen
)
# Do the episode:
self.module.end_episode(person_id=person_id)
[docs]
class AlriCureEvent(Event, IndividualScopeEventMixin):
"""This is the cure event. It is scheduled by an HSI treatment event. It enacts the actual "cure" of the person
that is caused (after some delay) by the treatment administered."""
[docs]
def __init__(self, module, person_id):
super().__init__(module, person_id=person_id)
[docs]
def apply(self, person_id):
df = self.sim.population.props
person = df.loc[person_id]
# The event should not run if the person is not currently alive
if not person.is_alive:
return
# Check if person should really be cured:
if person.ri_current_infection_status:
# Log the cure:
pathogen = person.ri_primary_pathogen
self.module.logging_event.new_cured_case(
age=person.age_years,
pathogen=pathogen
)
# End the episode:
self.module.end_episode(person_id=person_id)
[docs]
class AlriDeathEvent(Event, IndividualScopeEventMixin):
"""This Event is for the death of someone that is caused by the infection with a pathogen that causes Alri."""
[docs]
def __init__(self, module, person_id):
super().__init__(module, person_id=person_id)
[docs]
def apply(self, person_id):
df = self.sim.population.props # shortcut to the dataframe
person = df.loc[person_id]
# The event should not run if the person is not currently alive
if not person.is_alive:
return
# Check if person should really die of Alri:
if (
person.ri_current_infection_status and
(person.ri_scheduled_death_date == self.sim.date) and
pd.isnull(person.ri_scheduled_recovery_date)
):
# Do the death:
pathogen = person.ri_primary_pathogen
self.module.sim.modules['Demography'].do_death(
individual_id=person_id,
cause='ALRI_' + pathogen,
originating_module=self.module
)
# Log the death in the Alri logging system
self.module.logging_event.new_death(
age=person.age_years,
pathogen=pathogen,
sp02_level=person.ri_SpO2_level
)
# ---------------------------------------------------------------------------------------------------------
# ==================================== HEALTH SYSTEM INTERACTION EVENTS ===================================
# ---------------------------------------------------------------------------------------------------------
[docs]
class HSI_Alri_Treatment(HSI_Event, IndividualScopeEventMixin):
"""HSI event for treating uncomplicated pneumonia. This event runs for every presentation and represents all the
interactions with the healthcare system at all the levels."""
[docs]
def __init__(self, module: Module, person_id: int, facility_level: str = "0", inpatient: bool = False,
is_followup_following_treatment_failure: bool = False):
super().__init__(module, person_id=person_id)
self._treatment_id_stub = 'Alri_Pneumonia_Treatment'
self._facility_levels = ("0", "1a", "1b", "2") # Health facility levels at which care may be provided
assert facility_level in self._facility_levels
self.is_followup_following_treatment_failure = is_followup_following_treatment_failure
if not inpatient:
self._as_out_patient(facility_level)
else:
self._as_in_patient(facility_level)
if person_id is not None:
self._age_exact_years = self.sim.population.props.at[person_id, 'age_exact_years']
[docs]
def _as_out_patient(self, facility_level):
"""Cast this HSI as an out-patient appointment."""
self.TREATMENT_ID = f'{self._treatment_id_stub}_Outpatient'
self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({
('ConWithDCSA' if facility_level == '0' else 'Under5OPD'): 1})
self.ACCEPTED_FACILITY_LEVEL = facility_level
assert not self.is_followup_following_treatment_failure, 'Follow-up appointment cannot be an outpatient appt.'
[docs]
def _as_in_patient(self, facility_level):
"""Cast this HSI as an in-patient appointment."""
self.TREATMENT_ID = \
f'{self._treatment_id_stub}_Inpatient{"_Followup" if self.is_followup_following_treatment_failure else ""}'
self.EXPECTED_APPT_FOOTPRINT = self.make_appt_footprint({})
self.ACCEPTED_FACILITY_LEVEL = facility_level
self.BEDDAYS_FOOTPRINT = self.make_beddays_footprint({'general_bed': 7})
[docs]
def _refer_to_next_level_up(self):
"""Schedule this event to occur again today at the next level-up (if there is a next level-up)."""
def _next_in_sequence(seq: tuple, x: str):
"""Return next value in a sequence of strings, or None if at end of sequence."""
if x == seq[-1]:
return None
for i, _x in enumerate(seq):
if _x == x:
return seq[i + 1]
_next_level_up = _next_in_sequence(self._facility_levels, self.ACCEPTED_FACILITY_LEVEL)
if _next_level_up is not None:
self.sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Alri_Treatment(
module=self.module,
person_id=self.target,
inpatient=self._is_as_in_patient,
facility_level=_next_level_up
),
topen=self.sim.date,
tclose=self.sim.date + pd.DateOffset(days=1),
priority=0)
[docs]
def _refer_to_become_inpatient(self):
"""Schedule a copy of this event to occur today at this level as an in-patient appointment, at the higher level
of the current level and level '1b'."""
the_higher_level_between_this_level_and_1b = '1b' if self.ACCEPTED_FACILITY_LEVEL in ('0', '1a', '1b') else '2'
self.sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Alri_Treatment(
module=self.module,
person_id=self.target,
inpatient=True,
facility_level=the_higher_level_between_this_level_and_1b
),
topen=self.sim.date,
tclose=self.sim.date + pd.DateOffset(days=1),
priority=0)
[docs]
def _schedule_follow_up_following_treatment_failure(self):
"""Schedule a copy of this event to occur in 5 days time as a 'follow-up' appointment at this level
(if above "0") and as an in-patient."""
self.sim.modules['HealthSystem'].schedule_hsi_event(
HSI_Alri_Treatment(
module=self.module,
person_id=self.target,
inpatient=True,
facility_level=self.ACCEPTED_FACILITY_LEVEL if self.ACCEPTED_FACILITY_LEVEL != "0" else "1a",
is_followup_following_treatment_failure=True,
),
topen=self.sim.date + pd.DateOffset(days=5),
tclose=None,
priority=0)
@property
def _is_as_in_patient(self):
"""True if this HSI_Event is cast as an in-patient appointment"""
return 'Inpatient' in self.TREATMENT_ID
[docs]
def _get_cons(self, _arg: Union[str, Tuple[str]]) -> bool:
"""Checks availability of group (or groups) of consumables identified by a string (or tuple of strings).
* If the argument is a string, True is returned if _all_ of the item_codes in that group are available.
* If the argument is a tuple of strings, True is returned if, for _any_ of the groups identified by the
strings, _all_ of the item_codes in that group are available. This is suitable if there is a preferred group
of consumables to use, but one or more 'back-ups' that could be used if the first is not available."""
if isinstance(_arg, str):
return self._get_cons_group(item_group_str=_arg)
elif isinstance(_arg, tuple):
return self._get_cons_with_backups(tuple_of_item_group_str=_arg)
else:
raise ValueError("Argument is neither a tuple not a string.")
[docs]
def _get_cons_group(self, item_group_str: str) -> bool:
"""True if _all_ of a group of consumables (identified by a string) is available."""
if item_group_str is not None:
return self.get_consumables(self.module.consumables_used_in_hsi[item_group_str])
else:
raise ValueError('String for the group of consumables not provided')
[docs]
def _get_cons_with_backups(self, tuple_of_item_group_str: Tuple[str]):
"""Returns True if `_get_cons_group` is True for any in a tuple of strings (each identifying a group of
consumables). It works by attempting `_get_cons_group` with the first entry in a tuple of strings; and only
tries the next entry if it is not available; repeats until _get_cons_group is found to be True for an entry."""
for _item_group_str in tuple_of_item_group_str:
if self._get_cons_group(_item_group_str):
return True # _get_cons is True for at least one entry
return False # _get_cons_group is not True for any entry.
[docs]
def _assess_and_treat(self, age_exact_years, oxygen_saturation, symptoms):
"""This routine is called in every HSI. It classifies the disease of the child and commissions treatment
accordingly."""
if not self._is_as_in_patient:
# Assessment process if not an in-patient:
classification_for_treatment_decision = self._get_disease_classification_for_treatment_decision(
age_exact_years=age_exact_years,
symptoms=symptoms,
oxygen_saturation=oxygen_saturation,
facility_level=self.ACCEPTED_FACILITY_LEVEL,
use_oximeter=self._get_cons('Pulse_oximetry'),
)
self._provide_bronchodilator_if_wheeze(
facility_level=self.ACCEPTED_FACILITY_LEVEL,
symptoms=symptoms,
)
self._do_action_given_classification(
classification_for_treatment_decision=classification_for_treatment_decision,
age_exact_years=age_exact_years,
facility_level=self.ACCEPTED_FACILITY_LEVEL,
)
else:
# For in-patients, provide treatments as though classification_for_treatment_decision =
# 'danger_signs_pneumonia', as this is the reasonable clinical presumption for in-patients.
self._do_action_given_classification(
classification_for_treatment_decision='danger_signs_pneumonia', # assumed for sbi for < 2 months
age_exact_years=age_exact_years,
facility_level=self.ACCEPTED_FACILITY_LEVEL,
)
[docs]
def _has_staph_aureus(self):
"""Returns True if the person has Staph. aureus as either primary or secondary infection"""
person_id = self.target
infections = self.sim.population.props.loc[
person_id, ['ri_primary_pathogen', 'ri_secondary_bacterial_pathogen']
].to_list()
return 'Staph_aureus' in infections
[docs]
def _get_imci_classification_based_on_symptoms(self, child_is_younger_than_2_months: bool, symptoms: list) -> str:
"""Based on age and symptoms, classify WHO-pneumonia severity. This is regarded as the *TRUE* classification
based on symptoms. It will return one of: {
'fast_breathing_pneumonia',
'danger_signs_pneumonia',
'chest_indrawing_pneumonia,
'cough_or_cold'
}."""
return self.module.get_imci_classification_based_on_symptoms(
child_is_younger_than_2_months=child_is_younger_than_2_months, symptoms=symptoms)
[docs]
@staticmethod
def _get_imci_classification_by_SpO2_measure(oxygen_saturation: bool) -> str:
"""Return classification based on age and oxygen_saturation. It will return one of: {
'danger_signs_pneumonia', <-- implies needs oxygen
'' <-- implies does not need oxygen
}."""
if oxygen_saturation == '<90%':
return 'danger_signs_pneumonia'
else:
return ''
[docs]
def _get_classification_given_by_health_worker(self,
imci_classification_based_on_symptoms: str,
facility_level: str) -> str:
"""Determine the classification of the disease that would be given by the health worker at a particular
facility_level, allowing for the probability of incorrect classification. It will return one of: {
<the argument provided for `imci_symptom_based_classification`>
'cough_or_cold',
'fast_breathing_pneumonia',
'chest_indrawing_pneumonia'
}."""
rand = self.module.rng.random_sample
rand_choice = self.module.rng.choice
p = self.module.parameters
def _classification_at_facility_level_0(imci_classification_based_on_symptoms):
"""Return classification if it does at facility level 0"""
if imci_classification_based_on_symptoms in ('chest_indrawing_pneumonia', 'danger_signs_pneumonia'):
if rand() < p['sensitivity_of_classification_of_danger_signs_pneumonia_facility_level0']:
return imci_classification_based_on_symptoms
else:
return rand_choice(
['fast_breathing_pneumonia', 'cough_or_cold'],
p=[
p['prob_iCCM_severe_pneumonia_treated_as_fast_breathing_pneumonia'],
1.0 - p['prob_iCCM_severe_pneumonia_treated_as_fast_breathing_pneumonia']
]
)
elif imci_classification_based_on_symptoms == 'fast_breathing_pneumonia':
if rand() < p['sensitivity_of_classification_of_fast_breathing_pneumonia_facility_level0']:
return imci_classification_based_on_symptoms
else:
return 'cough_or_cold'
elif imci_classification_based_on_symptoms == "cough_or_cold":
return "cough_or_cold"
else:
raise ValueError(f'Classification not recognised: {imci_classification_based_on_symptoms}')
def _classification_at_facility_level_1(imci_classification_based_on_symptoms):
"""Return classification if it does at facility level 1"""
if imci_classification_based_on_symptoms == 'danger_signs_pneumonia':
if rand() < p['sensitivity_of_classification_of_severe_pneumonia_facility_level1']:
return imci_classification_based_on_symptoms
else:
return rand_choice(
['chest_indrawing_pneumonia', 'cough_or_cold'],
p=[
p['prob_IMCI_severe_pneumonia_treated_as_non_severe_pneumonia'],
1.0 - p['prob_IMCI_severe_pneumonia_treated_as_non_severe_pneumonia']
]
)
elif imci_classification_based_on_symptoms in ('fast_breathing_pneumonia', 'chest_indrawing_pneumonia'):
if rand() < p['sensitivity_of_classification_of_non_severe_pneumonia_facility_level1']:
return imci_classification_based_on_symptoms
else:
return 'cough_or_cold'
elif imci_classification_based_on_symptoms == "cough_or_cold":
return "cough_or_cold"
else:
raise ValueError(f'Classification not recognised: {imci_classification_based_on_symptoms}')
def _classification_at_facility_level_2(imci_classification_based_on_symptoms):
"""Return classification if it does at facility level 2"""
if imci_classification_based_on_symptoms == 'danger_signs_pneumonia':
if rand() < p['sensitivity_of_classification_of_severe_pneumonia_facility_level2']:
return imci_classification_based_on_symptoms
else:
return rand_choice(
['chest_indrawing_pneumonia', 'cough_or_cold'],
p=[
p['prob_IMCI_severe_pneumonia_treated_as_non_severe_pneumonia'],
1.0 - p['prob_IMCI_severe_pneumonia_treated_as_non_severe_pneumonia']
]
)
elif imci_classification_based_on_symptoms in ('fast_breathing_pneumonia', 'chest_indrawing_pneumonia'):
if rand() < p['sensitivity_of_classification_of_non_severe_pneumonia_facility_level2']:
return imci_classification_based_on_symptoms
else:
return 'cough_or_cold'
elif imci_classification_based_on_symptoms == "cough_or_cold":
return "cough_or_cold"
else:
raise ValueError(f'Classification not recognised: {imci_classification_based_on_symptoms}')
if facility_level == "0":
classification = _classification_at_facility_level_0(imci_classification_based_on_symptoms)
elif facility_level in ("1a", "1b"):
classification = _classification_at_facility_level_1(imci_classification_based_on_symptoms)
elif facility_level == "2":
classification = _classification_at_facility_level_2(imci_classification_based_on_symptoms)
else:
raise ValueError(f"Facility Level not recognised: {facility_level}")
assert classification in self.module.classifications
return classification
[docs]
def _get_disease_classification_for_treatment_decision(self,
age_exact_years,
symptoms,
oxygen_saturation,
facility_level,
use_oximeter,
) -> str:
"""Returns the classification of disease for the purpose of treatment, which may be based on the results of the
pulse oximetry (if available) or the health worker's own classification. It will be one of: {
'danger_signs_pneumonia', (symptoms-based assessment OR spO2 assessment): implies need oxygen
'fast_breathing_pneumonia', (symptoms-based assessment)
'chest_indrawing_pneumonia', (symptoms-based assessment)
'cough_or_cold' (symptoms-based assessment)
}."""
if use_oximeter:
self.add_equipment({'Pulse oximeter'})
child_is_younger_than_2_months = age_exact_years < (2.0 / 12.0)
imci_classification_based_on_symptoms = self._get_imci_classification_based_on_symptoms(
child_is_younger_than_2_months=child_is_younger_than_2_months,
symptoms=symptoms)
imci_classification_by_SpO2_measure = self._get_imci_classification_by_SpO2_measure(
oxygen_saturation=oxygen_saturation)
hw_assigned_classification = self._get_classification_given_by_health_worker(
imci_classification_based_on_symptoms=imci_classification_based_on_symptoms,
facility_level=facility_level)
# Final classification gives precedence to the spO2 measure if it can be used:
_classification = imci_classification_by_SpO2_measure \
if (use_oximeter and (imci_classification_by_SpO2_measure != '')) else hw_assigned_classification
assert _classification in self.module.classifications
return _classification
[docs]
def _do_action_given_classification(self,
classification_for_treatment_decision,
age_exact_years,
facility_level,
):
"""Do the actions that are required given a particular classification and the current facility level. This
entails referrals upwards and/or admission at in-patient, and when at the appropriate level, trying to provide
the ideal treatment."""
p = self.module.parameters
def _provide_consumable_and_refer(cons: str) -> None:
"""Provide a consumable (ignoring availability) and refer patient to next level up."""
if cons is not None:
_ = self._get_cons(cons)
self._refer_to_next_level_up()
def _try_treatment(antibiotic_indicated: Tuple[str], oxygen_indicated: bool) -> None:
"""Try to provide a `treatment_indicated` and refer to next level if the consumables are not available."""
assert [_antibiotic in self.module.antibiotics + [''] for _antibiotic in antibiotic_indicated]
if antibiotic_indicated[0] != '':
antibiotic_available = self._get_cons(antibiotic_indicated)
antibiotic_provided = antibiotic_indicated[0] if antibiotic_available else ''
else:
antibiotic_available = True
antibiotic_provided = ''
oxygen_available = self._get_cons('Oxygen_Therapy')
oxygen_provided = (oxygen_available and oxygen_indicated)
# If individual is provided with oxygen, add used equipment
if oxygen_provided:
self.add_equipment({'Oxygen cylinder, with regulator', 'Nasal Prongs'})
# If individual is provided with intravenous antibiotics, add used equipment
if antibiotic_provided in ('1st_line_IV_antibiotics',
'Benzylpenicillin_gentamicin_therapy_for_severe_pneumonia'):
self.add_equipment({'Infusion pump', 'Drip stand'})
all_things_needed_available = antibiotic_available and (
(oxygen_available and oxygen_indicated) or (not oxygen_indicated)
)
if (not all_things_needed_available) and (facility_level != '2'):
# Something that is needed is not available -> Refer up if possible.
self._refer_to_next_level_up()
else:
# Provide treatment with what is available
treatment_outcome = self.module.do_effects_of_treatment_and_return_outcome(
person_id=self.target,
antibiotic_provided=antibiotic_provided,
oxygen_provided=oxygen_provided
)
if treatment_outcome == 'failure':
if self.module.rng.rand() < p['prob_for_followup_if_treatment_failure']:
self._schedule_follow_up_following_treatment_failure()
def _do_if_fast_breathing_pneumonia():
"""What to do if classification is `fast_breathing`."""
_try_treatment(
**self.module._ultimate_treatment_indicated_for_patient(
classification_for_treatment_decision='fast_breathing_pneumonia',
age_exact_years=age_exact_years,
)
)
def _do_if_chest_indrawing_pneumonia():
"""What to do if classification is `chest_indrawing_pneumonia`."""
if facility_level == '0':
_provide_consumable_and_refer('First_dose_oral_amoxicillin_for_referral')
else:
_try_treatment(
**self.module._ultimate_treatment_indicated_for_patient(
classification_for_treatment_decision='chest_indrawing_pneumonia',
age_exact_years=age_exact_years,
)
)
def _do_if_danger_signs_pneumonia():
"""What to do if classification is `danger_signs_pneumonia."""
if facility_level == '0':
_provide_consumable_and_refer('First_dose_oral_amoxicillin_for_referral')
else:
if not self._is_as_in_patient:
_ = self._get_cons('First_dose_IM_antibiotics_for_referral')
self._refer_to_become_inpatient()
else:
_try_treatment(
**self.module._ultimate_treatment_indicated_for_patient(
classification_for_treatment_decision='danger_signs_pneumonia',
age_exact_years=age_exact_years,
)
)
def _do_if_cough_or_cold():
"""What to do if `cough_or_cold`."""
_try_treatment(
**self.module._ultimate_treatment_indicated_for_patient(
classification_for_treatment_decision='cough_or_cold',
age_exact_years=age_exact_years,
)
)
# Do the appropriate action
{
'fast_breathing_pneumonia': _do_if_fast_breathing_pneumonia,
'chest_indrawing_pneumonia': _do_if_chest_indrawing_pneumonia,
'danger_signs_pneumonia': _do_if_danger_signs_pneumonia,
'cough_or_cold': _do_if_cough_or_cold
}[classification_for_treatment_decision]()
[docs]
def _provide_bronchodilator_if_wheeze(self, facility_level, symptoms):
"""Provide bronchodilator if wheeze is among the symptoms"""
if 'wheeze' in symptoms:
if facility_level == '1a':
_ = self._get_cons('Inhaled_Brochodilator')
else:
# n.b. this is never called, see issue 1172
_ = self._get_cons('Brochodilator_and_Steroids')
[docs]
def do_on_follow_up_following_treatment_failure(self):
"""Things to do for a patient who is having this HSI following a failure of an earlier treatment.
A further drug will be used but this will have no effect on the chance of the person dying."""
if self._has_staph_aureus():
cons_avail = self._get_cons('2nd_line_Antibiotic_therapy_for_severe_staph_pneumonia')
else:
cons_avail = self._get_cons('Ceftriaxone_therapy_for_severe_pneumonia')
if cons_avail:
self.add_equipment({'Infusion pump', 'Drip stand'})
[docs]
def apply(self, person_id, squeeze_factor):
"""Assess and attempt to treat the person."""
if not self.is_followup_following_treatment_failure:
# Do nothing if the person is not currently infected and currently experiencing an episode
person = self.sim.population.props.loc[person_id]
if not person.ri_current_infection_status and (
person.ri_start_of_current_episode <= self.sim.date <= person.ri_end_of_current_episode
):
return
# Do nothing if the persons does not have indicating symptoms
symptoms = self.sim.modules['SymptomManager'].has_what(person_id=person_id)
if not {'cough', 'difficult_breathing'}.intersection(symptoms):
return self.make_appt_footprint({})
# Do nothing if the person is already on treatment
if person.ri_on_treatment:
return self.make_appt_footprint({})
# If the HSI is at level 0 and is for a child aged less than 2 months, refer to the next level.
if (self.ACCEPTED_FACILITY_LEVEL == '0') and (person.age_exact_years < 2.0 / 12.0):
self._refer_to_next_level_up()
# Attempt treatment:
self._assess_and_treat(age_exact_years=person.age_exact_years,
symptoms=symptoms,
oxygen_saturation=person.ri_SpO2_level,
)
else:
self.do_on_follow_up_following_treatment_failure()
[docs]
def never_ran(self):
"""If this event never ran, refer to next level up."""
self._refer_to_next_level_up()
# ---------------------------------------------------------------------------------------------------------
# LOGGING EVENTS
# ---------------------------------------------------------------------------------------------------------
[docs]
class AlriLoggingEvent(RegularEvent, PopulationScopeEventMixin):
"""This Event logs the number of incident cases that have occurred since the previous logging event.
Analysis scripts expect that the frequency of this logging event is once per year."""
[docs]
def __init__(self, module):
# This event to occur every year
self.repeat = 12
super().__init__(module, frequency=DateOffset(months=self.repeat))
# initialise trakcers of incident cases, new recoveries, new treatments and deaths due to ALRI
age_grps = {**{0: "0", 1: "1", 2: "2-4", 3: "2-4", 4: "2-4"}, **{x: "5+" for x in range(5, 100)}}
self.trackers = {
'incident_cases': Tracker(age_grps=age_grps, pathogens=self.module.all_pathogens),
'recovered_cases': Tracker(age_grps=age_grps, pathogens=self.module.all_pathogens),
'cured_cases': Tracker(age_grps=age_grps, pathogens=self.module.all_pathogens),
'deaths': Tracker(age_grps=age_grps, pathogens=self.module.all_pathogens),
'deaths_among_persons_with_SpO2<90%': Tracker(),
'seeking_care': Tracker(),
'treated': Tracker(),
'pulmonary_complication_cases': Tracker(),
'systemic_complication_cases': Tracker(),
'hypoxaemic_cases': Tracker()
}
[docs]
def new_case(self, **kwargs):
self.trackers['incident_cases'].add_one(**kwargs)
[docs]
def new_recovered_case(self, **kwargs):
self.trackers['recovered_cases'].add_one(**kwargs)
[docs]
def new_cured_case(self, **kwargs):
self.trackers['cured_cases'].add_one(**kwargs)
[docs]
def new_death(self, **kwargs):
self.trackers['deaths'].add_one(age=kwargs['age'], pathogen=kwargs['pathogen'])
if kwargs['sp02_level'] == '<90%':
self.trackers['deaths_among_persons_with_SpO2<90%'].add_one()
[docs]
def new_seeking_care(self, **kwargs):
self.trackers['seeking_care'].add_one(**kwargs)
[docs]
def new_treated(self, **kwargs):
self.trackers['treated'].add_one(**kwargs)
[docs]
def new_pulmonary_complication_case(self, **kwargs):
self.trackers['pulmonary_complication_cases'].add_one(**kwargs)
[docs]
def new_systemic_complication_case(self, **kwargs):
self.trackers['systemic_complication_cases'].add_one(**kwargs)
[docs]
def new_hypoxaemic_case(self, **kwargs):
self.trackers['hypoxaemic_cases'].add_one(**kwargs)
[docs]
def apply(self, population):
"""
Log:
1) Number of new cases, by age-group and by pathogen since the last logging event
2) Total number of cases, recovery, treatments and deaths since the last logging event
"""
# 1) Number of new cases, by age-group and by pathogen, since the last logging event
logger.info(
key='incidence_count_by_age_and_pathogen',
data=self.trackers['incident_cases'].report_current_counts(),
description='Pathogens incident case counts since last logging event'
)
# 2) Total number of in all the trackers since the last logging event
logger.info(
key='event_counts',
data={k: v.report_current_total() for k, v in self.trackers.items()},
description='Counts of trackers since last logging event'
)
# 3) Reset the trackers
for tracker in self.trackers.values():
tracker.reset()
class Tracker:
"""Helper class to be a counter for number of events occurring by age-group and by pathogen."""
def __init__(self, age_grps: Dict = None, pathogens: List = None):
"""Create and initialise tracker"""
# Check and store parameters
self.pathogens = [] if pathogens is None else pathogens
self.age_grps_lookup = {} if age_grps is None else age_grps
self.unique_age_grps = sorted(set(self.age_grps_lookup.values()))
# Initialise Tracker
self.tracker = None
self.reset()
def reset(self):
"""Produce a dict of the form: { <Age-Grp>: {<Pathogen>: <Count>} } if age-groups and pathogens are specified;
otherwise the tracker is an integer."""
# if collections are not empty
if self.unique_age_grps and self.pathogens:
self.tracker = {
age: dict(zip(self.pathogens, [0] * len(self.pathogens))) for age in self.unique_age_grps
}
else:
self.tracker = 0
def add_one(self, age=None, pathogen=None):
"""Increment counter by one for a specific age and pathogen"""
if (age is None) and (pathogen is None):
# increment by one, not specifically by age and pathogen:
self.tracker += 1
else:
# increment by one, specifically by age and pathogen:
assert age in self.age_grps_lookup, 'Age not recognised'
assert pathogen in self.pathogens, 'Pathogen not recognised'
age_grp = self.age_grps_lookup[age]
self.tracker[age_grp][pathogen] += 1
def report_current_counts(self):
return self.tracker
def report_current_total(self):
if not isinstance(self.tracker, int):
total = 0
for _a in self.tracker.keys():
total += sum(self.tracker[_a].values())
return total
return self.tracker
# ---------------------------------------------------------------------------------------------------------
# DEBUGGING / TESTING EVENTS
# ---------------------------------------------------------------------------------------------------------
[docs]
class AlriCheckPropertiesEvent(RegularEvent, PopulationScopeEventMixin):
"""This event runs daily and checks properties are in the right configuration. Only use whilst debugging!"""
[docs]
def __init__(self, module):
super().__init__(module, frequency=DateOffset(days=1))
[docs]
def apply(self, population):
self.module.check_properties()
[docs]
class AlriIndividualLoggingEvent(RegularEvent, PopulationScopeEventMixin):
"""This Event logs the daily occurrence to a single individual child."""
[docs]
def __init__(self, module):
# This logging event to occur every day
super().__init__(module, frequency=DateOffset(days=1))
self.person_id = self.module.log_individual
assert self.person_id in module.sim.population.props.index, 'The person identified to be logged does not exist.'
[docs]
def apply(self, population):
"""Log all properties for this module"""
if self.person_id is not None:
df = self.sim.population.props
logger.info(
key='log_individual',
data=df.loc[self.person_id, self.module.PROPERTIES.keys()].to_dict(),
description='Properties for one person (the first under-five-year-old in the dataframe), each day.'
)
[docs]
class AlriPropertiesOfOtherModules(Module):
"""For the purpose of the testing, this module generates the properties upon which the Alri module relies"""
INIT_DEPENDENCIES = {'Demography'}
# Though this module provides some properties from NewbornOutcomes we do not list
# NewbornOutcomes in the ALTERNATIVE_TO set to allow using in conjunction with
# SimplifiedBirths which can also be used as an alternative to NewbornOutcomes
ALTERNATIVE_TO = {'Hiv', 'Epi', 'Wasting'}
PROPERTIES = {
'hv_inf': Property(Types.BOOL, 'temporary property'),
'hv_art': Property(Types.CATEGORICAL, 'temporary property',
categories=["not", "on_VL_suppressed", "on_not_VL_suppressed"]),
'nb_low_birth_weight_status': Property(Types.CATEGORICAL, 'temporary property',
categories=['extremely_low_birth_weight', 'very_low_birth_weight',
'low_birth_weight', 'normal_birth_weight']),
'nb_breastfeeding_status': Property(Types.CATEGORICAL, 'temporary property',
categories=['none', 'non_exclusive', 'exclusive']),
'va_pneumo_all_doses': Property(Types.BOOL, 'temporary property'),
'va_hib_all_doses': Property(Types.BOOL, 'temporary property'),
'va_measles_all_doses': Property(Types.BOOL, 'temporary property'),
'un_clinical_acute_malnutrition': Property(Types.CATEGORICAL, 'temporary property',
categories=['MAM', 'SAM', 'well']),
}
[docs]
def read_parameters(self, data_folder):
pass
[docs]
def initialise_population(self, population):
df = population.props
df.loc[df.is_alive, 'hv_inf'] = False
df.loc[df.is_alive, 'hv_art'] = 'not'
df.loc[df.is_alive, 'nb_low_birth_weight_status'] = 'normal_birth_weight'
df.loc[df.is_alive, 'nb_breastfeeding_status'] = 'non_exclusive'
df.loc[df.is_alive, 'va_pneumo_all_doses'] = False
df.loc[df.is_alive, 'va_hib_all_doses'] = False
df.loc[df.is_alive, 'va_measles_all_doses'] = False
df.loc[df.is_alive, 'un_clinical_acute_malnutrition'] = 'well'
[docs]
def initialise_simulation(self, sim):
pass
[docs]
def on_birth(self, mother, child):
df = self.sim.population.props
df.at[child, 'hv_inf'] = False
df.at[child, 'hv_art'] = 'not'
df.at[child, 'nb_low_birth_weight_status'] = 'normal_birth_weight'
df.at[child, 'nb_breastfeeding_status'] = 'non_exclusive'
df.at[child, 'va_pneumo_all_doses'] = False
df.at[child, 'va_hib_all_doses'] = False
df.at[child, 'va_measles_all_doses'] = False
df.at[child, 'un_clinical_acute_malnutrition'] = 'well'
[docs]
class AlriIncidentCase_Lethal_DangerSigns_Pneumonia(AlriIncidentCase):
"""This Event can be used for testing and is a drop-in replacement of `AlriIncidentCase`. It always produces an
infection that will be lethal and should be classified as 'danger_signs_pneumonia'"""
[docs]
def __init__(self, module, person_id, pathogen):
super().__init__(module, person_id=person_id, pathogen=pathogen)
[docs]
def apply(self, person_id):
df = self.sim.population.props
params = self.module.parameters
self.apply_characteristics_of_the_case(
person_id=person_id,
chars={
'disease_type': 'pneumonia',
'bacterial_coinfection': np.nan,
'duration_in_days_of_alri': 10,
'date_of_outcome': self.module.sim.date + DateOffset(days=10),
'episode_end': self.module.sim.date + DateOffset(days=10 + params['days_between_treatment_and_cure']),
'symptoms': ['cough', 'chest_indrawing', 'danger_signs'],
'complications': ['hypoxaemia'],
'oxygen_saturation': "<90%",
'will_die': True,
}
)
assert 'danger_signs_pneumonia' == self.module.get_imci_classification_based_on_symptoms(
child_is_younger_than_2_months=df.at[person_id, 'age_exact_years'] < (2.0 / 12.0),
symptoms=self.sim.modules['SymptomManager'].has_what(person_id=person_id)
)
[docs]
class AlriIncidentCase_NonLethal_Fast_Breathing_Pneumonia(AlriIncidentCase):
"""This Event can be used for testing and is a drop-in replacement of `AlriIncidentCase`. It always produces an
infection that will be non-lethal and should be classified as a fast_breathing_pneumonia."""
[docs]
def __init__(self, module, person_id, pathogen):
super().__init__(module, person_id=person_id, pathogen=pathogen)
[docs]
def apply(self, person_id):
params = self.module.parameters
self.apply_characteristics_of_the_case(
person_id=person_id,
chars={
'disease_type': 'pneumonia',
'bacterial_coinfection': np.nan,
'duration_in_days_of_alri': 10,
'date_of_outcome': self.module.sim.date + DateOffset(days=10),
'episode_end': self.module.sim.date + DateOffset(days=10 + params['days_between_treatment_and_cure']),
'symptoms': ['cough', 'tachypnoea'],
'complications': ['hypoxaemia'],
'oxygen_saturation': ">=93%",
'will_die': False,
}
)
assert 'fast_breathing_pneumonia' == \
self.module.get_imci_classification_based_on_symptoms(
child_is_younger_than_2_months=False, symptoms=self.sim.modules['SymptomManager'].has_what(person_id=person_id)
)
def _make_hw_diagnosis_perfect(alri_module):
"""Modify the parameters of an instance of the Alri module so that sensitivity of all diagnosis steps is perfect."""
p = alri_module.parameters
p['sensitivity_of_classification_of_fast_breathing_pneumonia_facility_level0'] = 1.0
p['sensitivity_of_classification_of_danger_signs_pneumonia_facility_level0'] = 1.0
p['sensitivity_of_classification_of_non_severe_pneumonia_facility_level1'] = 1.0
p['sensitivity_of_classification_of_severe_pneumonia_facility_level1'] = 1.0
p['sensitivity_of_classification_of_non_severe_pneumonia_facility_level2'] = 1.0
p['sensitivity_of_classification_of_severe_pneumonia_facility_level2'] = 1.0
def _make_treatment_perfect(alri_module):
"""Modify the parameters of an instance of the Alri module so that treatment is perfectly effective."""
p = alri_module.parameters
# The probability of treatment failure to be 0.0
p['tf_1st_line_antibiotic_for_severe_pneumonia'] = 0.0
p['tf_2nd_line_antibiotic_for_severe_pneumonia'] = 0.0
p['tf_3day_amoxicillin_for_fast_breathing_with_SpO2>=90%'] = 0.0
p['tf_3day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'] = 0.0
p['tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'] = 0.0
p['tf_7day_amoxicillin_for_fast_breathing_pneumonia_in_young_infants'] = 0.0
p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2>=90%'] = 0.0
p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2<90%'] = 0.0
p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%'] = 0.0
def _make_treatment_ineffective(alri_module):
"""Modify the parameters of an instance of the Alri module so that treatment is completely ineffective."""
p = alri_module.parameters
# The probability of treatment failure to be 1.0
p['tf_1st_line_antibiotic_for_severe_pneumonia'] = 1.0
p['tf_2nd_line_antibiotic_for_severe_pneumonia'] = 1.0
p['tf_3day_amoxicillin_for_fast_breathing_with_SpO2>=90%'] = 1.0
p['tf_3day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'] = 1.0
p['tf_5day_amoxicillin_for_chest_indrawing_with_SpO2>=90%'] = 1.0
p['tf_7day_amoxicillin_for_fast_breathing_pneumonia_in_young_infants'] = 1.0
p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2>=90%'] = 1.0
p['tf_oral_amoxicillin_only_for_severe_pneumonia_with_SpO2<90%'] = 1.0
p['tf_oral_amoxicillin_only_for_non_severe_pneumonia_with_SpO2<90%'] = 1.0
def _make_treatment_and_diagnosis_perfect(alri_module):
"""Modify the parameters of an instance of the Alri module so that treatment and diagnosis is perfect."""
_make_hw_diagnosis_perfect(alri_module)
_make_treatment_perfect(alri_module)
def _make_high_risk_of_death(alri_module):
"""Modify the parameters of an instance of the Alri module so that the risk of death is high."""
params = alri_module.parameters
params['base_odds_death_ALRI_age<2mo'] *= 5.0
params['base_odds_death_ALRI_age2_59mo'] *= 5.0